



Owner: VOLA A/S

No.: MD-23147-EN\_rev Issued: 18-12-2024 Revision: 05-02-2025 Valid to: 18-12-2029

3rd PARTY **VERIFIED** 

EPD

VERIFIED ENVIRONMENTAL PRODUCT DECLARATION | ISO 14025 & EN 15804







#### Owner of the declaration

VOLA A/S Lunavej 2 8700 Horsens Denmark



VAT no.: 17531328

#### **Programme**

EPD Danmark www.epddanmark.dk



☐ Industry EPD

□ Product EPD

#### **Declared products**

6 products:

321L-16 321L-64

321-19 321L-40

321L-40

321-27

321L-60

#### **Production site**

VOLA A/S

Lunavej 2

8700 Horsens

Denmark

#### Product(s) use

VOLA fixtures are used in kitchens and bathrooms.

#### Declared/ functional unit

1 fixture with RSL of 30 years

#### Year of data

2022

#### **EPD** version

The first issue.

Issued:

Valid to:

18-12-2024

18-12-2029

#### **Basis of calculation**

This EPD is developed in accordance with the European standard EN 15804+A2.

#### **Comparability**

EPDs of construction products may not be comparable if they do not comply with the requirements in EN 15804. EPD data may not be comparable if the datasets used are not developed in accordance with EN 15804 and if the background systems are not based on the same database.

#### Validity

This EPD has been verified in accordance with ISO 14025 and is valid for 5 years from the date of issue.

#### Ise

The intended use of an EPD is to communicate scientifically based environmental information for construction products, for the purpose of assessing the environmental performance of buildings.

#### **EPD** type

- $\square$  Cradle-to-gate with modules C1-C4 and D
- $\Box$ Cradle-to-gate with options, modules C1-C4 and D
- □Cradle-to-gate
- □Cradle-to-gate with options

CEN standard EN 15804 serves as the core PCR

Independent verification of the declaration and data, according to EN ISO 14025

☐ internal

 $\ oxdot$  external

Third party verifier:

Charlotte B. Merlin

Martha Katrine Sørensen EPD Danmark

| Life o                 | cycle s   | stages        | and       | modu                    | les (N                 | 1ND =       | mod    | ule no      | ot dec        | lared)                    | )                        |                               |           |                  |          |                                                    |
|------------------------|-----------|---------------|-----------|-------------------------|------------------------|-------------|--------|-------------|---------------|---------------------------|--------------------------|-------------------------------|-----------|------------------|----------|----------------------------------------------------|
|                        | Product   | :             |           | ruction<br>cess         |                        |             |        | Use         |               |                           |                          |                               | End       | of life          |          | Beyond the system boundary                         |
| Raw material<br>supply | Transport | Manufacturing | Transport | Installation<br>process | Use                    | Maintenance | Repair | Replacement | Refurbishment | Operational<br>energy use | Operational<br>water use | De-construction<br>demolition | Transport | Waste processing | Disposal | Re-use,<br>recovery, and<br>recycling<br>potential |
| A1                     | A2        | А3            | A4        | A5                      | 5 B1 B2 B3 B4 B5 B6 B7 |             |        |             |               | В7                        | C1                       | C2                            | C3        | C4               | D        |                                                    |
| X                      | X         | X             | X         | X                       | x x x x x x x          |             |        |             |               |                           |                          | X                             | X         | X                | X        | X                                                  |





### **Product information**

#### **Product description**

The main product components are shown in Table 1. Values are given as intervals covering the eight products with six different surfaces. Specific recipes are used, and the composition of input materials is 100 % in mass -% of declared products.

Table 1: Material composition of products

| Material                 | Amount [%]    |
|--------------------------|---------------|
| Brass                    | 57,49 – 72,70 |
| Ceramics                 | 0,31 – 0,37   |
| Other metals             | 2,17 – 2,91   |
| Plastic                  | 2,44 – 2,80   |
| Rubber                   | 0,02 – 0,82   |
| Steel                    | 0,24 – 12,97  |
| Hot dip galvanised steel | 20,98 – 24,85 |
| Other                    | 0,06 - 0,09   |

#### **Product packaging:**

The composition of the product's sales and transport packaging is shown in the table below.

Table 2: Material composition of Sales and Transport Packaging for the final VOLA product

| Material      | Amount [%] |
|---------------|------------|
| LDPE          | 1,70       |
| Cardboard     | 94,36      |
| Paper         | 3,93       |
| Wooden pallet | 0,01       |
| Total         | 100        |

#### Representativity

This declaration, including data collection and the modeled foreground system including results, represents the production of 1 fixture from VOLA on the production site located in Denmark. Product-specific data are based on average values covering the period from 01.01.2022 to 31.12.2022. Background data are based on SimaPro 9.3 and are less than 10 years old. Only in a few cases are SimaPro 9.3 data supplemented with data from Ecoinvent 3.9.1 (2023).

Generally, the used background datasets are of high quality, and the majority of the datasets are only a few years old. VOLA buys certified electricity produced from wind energy in the period 1.1.2022-31.12.2022.

#### **Hazardous substances**

Declared products do not contain substances listed in the" Candidate List of Substances of Very High Concern for authorization" with the exception of lead contained in brass with a concentration above 0,1 %.

(http://echa.europa.eu/candidate-list-table)

#### **Essential characteristics**

There is no harmonized specification, but VOLA produces products according to relevant product standards. Components that are in contact with water are produced in lead-free brass, according to 4MS and California Assembly Bill AB1953. Components in stainless steel are produced in the material according to EN10088-3:2014 and AISI316 (American Iron and Steel Institute).

Further technical information can be obtained by contacting the manufacturer or on the manufacturer's website:

#### http://www.vola.com

#### Reference Service Life (RSL)

A reference service life (RSL) for all products is declared for 30 years. The lifespan of products has been provided by the manufacturer VOLA based on "BUILD REPORT 2021" Version 2021 – lifetime tables: Group 43 (3) = lifetime of 30 years (BUILD REPORT 2021).





#### **Picture of products**

Eighteen products (111, 111L, 111M, 112, 112L, 112M, 121, 121L, 121M, 122, 122L, 122M, 311, 311L, 311M, 321, 321L, 321M) are calculated in seven different surfaces (16 and 20, 19, 40, 27, 60, 64) and six product groups, see **Error! R eference source not found.**, Figure 3, and Figure 4. In the EPD the declared products are the worst-case product for each of the different product categories.



Figure 1: 111, 111M, 111L, 112, 122M, 112L



Figure 2: 121, 121M, 121L, 122, 122M, 122L



Figure 3: 311, 311M, 311L



Figure 4: 321, 321M, 321L

Group 4 called "Colors" have more surfaces: Grey (02), Blue (04), Orange (05), Light green (06), Yellow (08), Dark grey (09), Mocca (12), Bright red (14), Dark blue (15), Gloss black (17), Gloss white (18), Carmine red (21), Pink (25), Matt black (27), and Matt white (28).

Group 5 called "Exclusive color with PVD on Brass" have also more surfaces: Black (60), Deep black (62), Copper (63), Gold (65), and Nickel (68).

Group 6 called "Exclusive color with PVD on Stainless steel" have also more surfaces: Brushed black (61), Brushed copper (64), Brushed gold (70), and Dark brushed copper (71).





### LCA background

#### **Declared unit**

The declared unit is taken as the input of materials in order to produce 1 fixture.

The LCI and LCIA results in this EPD relate to 1 fixture from VOLA for the types: 111, 111L, 111M, 112, 112L, 112M, 121, 121L, 121M, 122, 122L, 122M, 311, 311L, 311M, 321, 321L and 321M.

Table 3, Table 4 and Table 5 show declared units for 6 product groups with 7 different surfaces (16 and 20, 19, 40, 27, 60, 64) and 6 different variations of products (321L-16, 321-19, 321L-40, 321-27, 321L-60, 321L-64)

#### The results for:

- Group no. 1 refers to Table 8 to Table 12
- Group no. 2 refers to Table 13 to Table 17
- Group no. 3 refers to Table 18 to Table 22
- Group no. 4 refers to Table 23 to Table 27
- Group no. 5 refers to Table 28 to Table 32
- Group no. 6 refers to Table 33 to Table 37

#### Table 3: Declared Unit -part 1.

|           |                                          |                 |             |      |      |      | Name  | / Value | 9    |      |      | n<br>kg                      |
|-----------|------------------------------------------|-----------------|-------------|------|------|------|-------|---------|------|------|------|------------------------------|
| Group no. | Surface/Material                         |                 | Surface no. | 111  | 1111 | 111  | 112   | 112L    | 112  | 121  | 121  | Conversion<br>factor to 1 kg |
|           |                                          |                 | S           |      |      |      | [kg/p | oiece]  |      |      |      | CC                           |
| 1         | Polished and brushed chrome              | Polished chrome | 16          | 2 25 | 3,30 | 3,28 | 2 22  | 2 27    | 3,35 | 3,29 | 3,34 | 0.20                         |
| 1         | Polished and brushed chrome              | Brushed chrome  | 20          | 3,25 | 3,30 | 3,28 | 3,33  | 3,37    | 3,33 | 3,29 | 3,34 | 0,28                         |
| 2         | Natural brass                            | Natural brass   | 19          | 3,26 | 3,30 | 3,28 | 3,33  | 4,00    | 3,98 | 3,29 | 3,96 | 0,26                         |
| 3         | Stainless steel                          | Stainless steel | 40          | 3,26 | 3,36 | 3,35 | 3,32  | 3,42    | 3,41 | 3,31 | 3,41 | 0,27                         |
| 4         | Colors                                   | Matt black      | 27          | 3,32 | 3,35 | 3,34 | -     | 4,05    | 3,41 | 3,34 | 3,38 | 0,26                         |
| 5         | Exclusive color (PVD on Brass)*          | Black           | 60          | 3,34 | 3,38 | 3,37 | 3,40  | 3,45    | 3,43 | 3,38 | 3,43 | 0,27                         |
| 6         | Exclusive color (PVD on Stainless steel) | Brushed copper  | 64          | 3,34 | 3,44 | 3,42 | 3,39  | 3,49    | 3,47 | 3,39 | 3,49 | 0,26                         |
|           | Declared unit                            |                 |             |      |      |      |       | 1       |      |      |      | 0,26-0,28                    |

<sup>\*</sup> PVD (physical vapor deposition) is a method like coating spray.

#### Table 4: Declared Unit - part 2.

|           |                                          |                 |             |      |      |      | Name , | / Value | 9 |   |   | _ pp                         |
|-----------|------------------------------------------|-----------------|-------------|------|------|------|--------|---------|---|---|---|------------------------------|
| Group no. | Surface/Material                         |                 | Surface no. | 121M | 122  | 122L | 122M   | -       | - | - | - | Conversion<br>factor to 1 kg |
|           |                                          |                 | S           |      |      |      | [kg/p  | iece]   |   |   |   | fac                          |
| 1         | Polished and brushed chrome              | Polished chrome | 16          | 3,32 | 3,36 | 3,41 | 3,39   | -       | - | - | - | 0,28                         |
| 1         | Polished and brushed chrome              | Brushed chrome  | 20          | 3,32 | 3,30 | 3,41 | 3,39   |         |   |   |   | 0,28                         |
| 2         | Natural brass                            | Natural brass   | 19          | 3,32 | 3,36 | 4,03 | 4,01   | -       | - | - | - | 0,26                         |
| 3         | Stainless steel                          | Stainless steel | 40          | 3,39 | 3,37 | 3,47 | 3,45   | -       | - | - | - | 0,27                         |
| 4         | Colors                                   | Matt black      | 27          | 3,36 | 3,42 | 4,08 | 4,06   | -       | - | - | - | 0,26                         |
| 5         | Exclusive color (PVD on Brass)           | Black           | 60          | 3,41 | 3,45 | 3,49 | 3,47   | -       | - | - | - | 0,27                         |
| 6         | Exclusive color (PVD on Stainless steel) | Brushed copper  | 64          | 3,48 | 3,45 | 3,55 | 3,53   | -       | - | - | - | 0,26                         |
|           | Declared unit                            |                 |             |      |      |      | 3      | L       |   |   |   | 0,26-0,28                    |





Table 5: Declared Unit - part 3.

|           |                                          |                 |             |      |      | Name , | / Value |      |      | r<br>kg                      |
|-----------|------------------------------------------|-----------------|-------------|------|------|--------|---------|------|------|------------------------------|
| Group no. | Surface/Material                         |                 | Surface no. | 311  | 3111 | 311M   | 321     | 321L | 321M | Conversion<br>factor to 1 kg |
|           |                                          |                 | S           |      |      | [kg/p  | iece]   |      |      | C<br>fac                     |
| 1         | Polished and brushed chrome              | Polished chrome | 16          | 4,11 | 4,16 | 4,14   | 4,15    | 4,19 | 4,17 | 0,28                         |
| 1         | Polished and brushed chrome              | Brushed chrome  | 20          | 4,11 | 4,10 | 4,14   | 4,15    | 4,19 | 4,17 | 0,20                         |
| 2         | Natural brass                            | Natural brass   | 19          | 4,74 | 4,17 | 4,14   | 4,77    | 4,77 | 4,20 | 0,26                         |
| 3         | Stainless steel                          | Stainless steel | 40          | 4,12 | 4,22 | 4,20   | 4,17    | 4,27 | 4,25 | 0,27                         |
| 4         | Colors                                   | Matt black      | 27          | 4,80 | 4,23 | 4,21   | 4,82    | 4,82 | 4,25 | 0,26                         |
| 5         | Exclusive color (PVD on Brass)           | Black           | 60          |      | 4,24 | 4,22   | 4,86    | 4,91 | 4,89 | 0,27                         |
| 6         | Exclusive color (PVD on Stainless steel) | Brushed copper  | 64          | 4,20 | 4,30 | 4,28   | 4,87    | 4,98 | 4,96 | 0,26                         |
| _         | Declared unit                            |                 |             |      | •    | -      | 1       |      | •    | 0,26-0,28                    |

#### **PCR**

This EPD is developed according to the core rules for the product category of construction products in EN 15804, and Part B/ PCR-Part B: Requirements on the EPD for Bathroom and showers.

#### **Guarantee of Origin – certificates**

#### Foreground system:

The product is produced using electricity from wind energy sources covered by GO for the EPD validity period. The LCA is modelled with electricity from wind energy.

#### Background system:

Upstream and downstream processes are modelled using a European electricity grid mix. This choice is made because data for the generation of electricity used in modules B-D shall be based on the electricity consumption mix on the market.





Flow diagram

The Flow diagram (Figure 5) conforms with the requirements of the modular approach and shows all phases. All phases are described below.

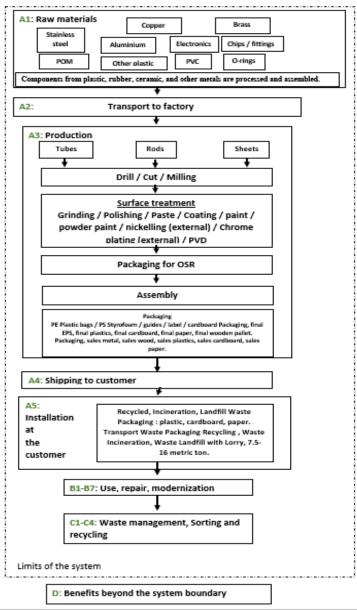



Figure 5: Flow diagram of product system with modules A1-D





#### System boundary

This EPD is based on a cradle-to-grave LCA, in which 100 weight-% have been accounted for.

The general rules for the exclusion of inputs and outputs follow the requirements in EN 15804, 6.3.5, where the total of neglected input flows per module shall be a maximum of 5 % of energy usage and mass and 1 % of energy usage and mass for unit processes.

#### Product stage (A1-A3) includes:

This product stage includes the acquisition of all raw materials, products, and energy, transport to the production site, packaging, and waste processing up to the "end-of-waste" state or final disposal. The LCA results are declared in aggregated form for the product stage, which means, that the sub-modules A1, A2, and A3 are declared as one module A1-A3. The manufacturing process is taken place in Denmark.

### A1: Extraction and processing of raw materials

VOLA uses high quality steel and brass to make sure the products are built to last. Components from plastic, rubber, ceramic, and other metals are reproduced from suppliers.

The materials that are used to pack all raw materials are metal strips, cardboard, paper, wood, and plastic.

### A2: Transport to the production site in Horsens, Denmark

The raw materials are transported to the manufacturing site. The modelling includes road and/or flight transportation of each raw material. The transportation of all raw materials is by trucks.

#### A3: Manufacturing processes

The production of packaging materials is taken into account at this stage. The processing of any waste arising from this stage is also included. The main raw material is stainless steel and brass. These materials constitute 25-73 % of the total product. Stainless steel components have different qualities: 304L and 316L. The brass

components are of different qualities: CW508L, CW511L, CW602N, CW608N, CW614N, and Eco

Brass. The rest of the components are mainly made of different kinds of rubber and plastic materials.

From solid brass/stainless steel rods or pipes, components are rotated, drilled, or milled on CNC machines. Subsequently, the components are ground/polished to create a unique surface, either by manual or automatic processes. Some components are hand-soldered or soldered by induction. The finished polished components are treated with a surface finish depending on the finish the customer wishes. Production is based on LEAN-production, where stocks are minimized and where products are put into production as soon as they are sold (Make to order, MTO).

The wooden pallets for the transportation of products are part of a return system, and therefore only 1/25 is accounted for due to the 25 times reuse rate.

The colored surfaces in product group no 4. and 8. represented by surface no. 27 also include powder coating material. Powder coating waste from production is 45 %.

The steel waste from production is 64-69 % for groups no. 3, 6, and 10; 75-77 % of steel waste is from groups no. 4 and 8; and 0 % from groups no. 1, 2, 5, and 7.

The brass waste from production is 44-46 % for groups no. 3 and 6; 51-56 % of brass waste is from groups no. 1, 2, 4, 5, 7, 8 and 10.

The waste of brass, steel, and powder coating during manufacturing processes is recycled and transported by lorry to the sorting and collecting center.

In this phase, the disposal of raw material packaging is considered. Waste packaging from raw materials (paper, cardboard, wood, metal) is transported to a sorting and collection center, where 100 % recycling is expected.

Transportation to the sorting and collecting center is covered by a European average EURO 5 lorry 16 t with a diesel engine, and distance to the recycling and incineration station is covered by a European average EURO 5 lorry >32 tons with a diesel engine.





The construction process stage (A4-A5) includes:

# A4: Transportation from the VOLA production site in Horsens, Denmark to customers

Distribution to customers is based on the current European market situation and takes into account not only the current fleet mix with primarily Euro 5 vehicles but also vehicle loading with an average of 5 t and effective distances, see Table 52. It is implemented within Europe using diesel-powered trucks. Some products were not sold in the target market in 2022, therefore the average transport distance (879 km) of all products was used as a conservative solution.

#### **A5: Installation of products**

Installation is simple and does not require any relevant energy consumption or use of materials, due to manual installation by technicians. Mounting instructions are included with the product or can be downloaded on: <a href="https://www.VOLA.com">www.VOLA.com</a>. Apart from the waste of sales and transport packaging for the final VOLA product (paper, cardboard, and plastics), no additional material flows are generated during installation.

Overall, 74,3 % of Sales and Transport Packaging for the final VOLA product is recycled, 11,6 % is transported to the landfill, and 14,1 % is incinerated, with the potential benefits reported in module D. Waste packaging materials are transported 300 km to the recycling center, 100 km to the incineration station, and 50 km to the landfill. Transportation is covered by a European average EURO 5 lorry 16 t with a diesel engine.

#### Use stage (B1-B7) includes:

#### B1: Use

The product has a reference service life of a minimum of 30 years. This determined that the product would last at least 30 years provided that the requirements for maintenance and repair throughout this period are kept. The lifespan of products has been provided by the

manufacturer, VOLA. This LCA phase scenario includes a use stage based in Europe. There are no direct emissions from the use of VOLA products.

#### **B2: Maintenance**

VOLA has declaimed this maintenance information. Maintenance instructions are part of the VOLA product, which also be downloaded at: <a href="https://www.VOLA.com">www.VOLA.com</a>. Waste packaging materials resulting from the maintenance are omitted.

#### **B3: Repair**

The product is made of a few parts that can easily be changed and replaced by new parts. The service interval for the VOLA parts depends on use and water quality scenarios. The estimated service interval is approx. 10 years. Parts that are calculated for repair are hoses, cartridges, and pilators. This module includes the waste handling of the disposed parts, with the potential benefits reported in module D.

VOLA guarantees that it is possible to get spare parts a minimum of 30 years from the day the product is ordered. Service drawing is available on: www.VOLA.com

#### **B4: Replacement**

There is no calculated replacement due to the declaration for a product life of 30 years.

#### **B5: Refurbishment**

No refurbishment is considered within 30 years.

#### (B6-B7) Consumption data

This use stage consists of energy and water consumption for the users with an assumption to be used in bathrooms and kitchens for 30 years. The water use calculation follows the formula provided in the reference PCR. Water and energy consumption are based on the European market.

The actual amount of water that is consumed during use partly depends on user behaviour. The technical operating scenario is available in Table 6, and Table 7.





The spouts 010 and 020 have the flow rate of 1,9 l/min of water consumption by using aerators, an average of 20 cycles per day, and a cycle time of 30 seconds, while the spouts 030 have the flow rate 3,5 l/min of water consumption by using flow restrictor at the spout connection an average of 20 cycles per day, and a cycle time of 30 seconds. Series 100 for basin and kitchen can be mounted with different spouts (010 – 020-030). This EPD applies only to spouts 010, 020. This is due to the big variation compared to spouts 030 in operational water use (module B7) caused by higher water consumption of sprouts 030.

Table 6: Consumption Data for spouts 010 and 020 - cycle time (1,9 l/min) in the use stage - Operational energy use and water use

| 1,9  /                      | min w                                            | ater-       | saving    | aerator<br>of 30 se |                 | Cycle tin           | ne Sett         | ings               |
|-----------------------------|--------------------------------------------------|-------------|-----------|---------------------|-----------------|---------------------|-----------------|--------------------|
|                             |                                                  | Inte        | ensity    | of use              | cons            | ater<br>umpti<br>on |                 | ergy<br>umpt<br>on |
| Us                          |                                                  | P<br>e<br>r | Pe<br>r   | Per                 | [Lit<br>res]    | [Litr<br>es]        | [k<br>Wh<br>]   | [k<br>Wh<br>]      |
|                             |                                                  | d<br>a<br>y | ye<br>ar  | RSL                 | per<br>yea<br>r | per<br>RSL          | per<br>ye<br>ar | per<br>RSL         |
| Aver<br>age<br>buil<br>ding | 0,<br>95<br>lit<br>er<br>s<br>pe<br>r<br>us<br>e | 2 0         | 7.3<br>00 | 219.<br>000         | 6.9<br>35       | 208.<br>050         | 0               | 0                  |

**Table 7: Construction data** 

| Name                                                    | Value | Unit |
|---------------------------------------------------------|-------|------|
| Maximum load temperature permanent operation            | 60    | °C   |
| Maximum load temperature temporary operation            | 70    | °C   |
| Flow rate (indications for a pressure range of 1-3 bar) | 0,3   | m³/h |
| Sound emissions                                         | 0-20  | dB   |

#### End of Life (C1-C4) includes:

The end-of-life stage consists of the deconstruction/demolition, transport, waste

management, and disposal processes to manage the product as waste after the use phase of 30 years life span. The generated waste in modules C1-C4 is included up to the "end-of-waste" state or final disposal, with the potential net benefits reported in module D. The end-of-life stage is based on the European market.

#### C1: Deconstruction, Demolition

For the demolition of water basin mixers, the energy consumption is 0,1 kWh. The electricity is based on the European grid mix.

#### C2: Transport

This stage includes the transportation of demolished products. 1,2- 1,5 % of product parts are transported 100 km to the incineration station, 92,1-92,7 % of the product is recycled and transported 300 km, and 6,3-6,7 % of the product is transported 50 km to the landfill. Transport is covered by a European average EURO 5 lorry 16 t with a diesel engine.

#### C3: Waste Processing

The end-of-life stage represents the waste scenario after a use stage where 1,2-1,7 % of the product parts are incinerated in module C3 with energy recovery accounted for in module D. Overall, 91,7-92,6 % of the product is recycled with material recovery accounted for in module D.

#### C4: Disposal

Overall, 6,3-6,7 % of the product is transported to a landfill.

### Re-use, recovery and recycling potential (D) includes:

Module D includes reuse, recovery, and/or recycling potential, expressed as net impact and benefits, due to reuse, recycling, and incineration of materials with energy recovery in modules A5, B3, and C3. The reused components made from raw materials in the product stage were assumed to replace similar components from raw materials. The plastic and rubber parts of the product are assumed to be incinerated at the end-of-life stage in module C3, whereas an energy recovery (75 % heat, 25 % electricity) and energy efficiency (80 % for heat, 25 % for electricity) from the incineration process is accounted for in module D.





### LCA results

The variation in environmental impact caused between products within the same groups lies in the base material amount i.e. steel, brass and the hot dip galvanisation steel treatment, and not in the product manufacturing. Therefore, the potential environmental impacts per surface treatments (no. 1-10) are presented in the next page. The potential environmental impact variation between the products and colors is below 10 % within the ten groups, thus justifying their grouping in one group and represented by the results of one product.

Group no. 1. Polished and brushed chrome, represented by 321L-16 – Polished chrome

Group no. 2. Natural brass, represented by 321-19 – Natural brass

Group no. 3. Stainless steel, represented by 321L-40 – Stainless steel

Group no. 4. Colors, represented by 321-27 – Matt black

Group no. 5. Exclusive color (PVD on Brass), represented by 321L-60 – Black

Group no. 6. Exclusive color (PVD on Stainless steel), represented by 321L-64 – Brushed copper





#### Group 1: Polished and brushed chrome is represented by 321L-16

Table 8: Environmental impact indicators - Group 1.

|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |              |              | ENV          | IRONM        | ENTAL I      | MPACT        | S PER F      | IXTURE       |              |              |              |              |              |               |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------|
| Parameter   | Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A1-A3        | A4           | A5           | B1           | B2           | В3           | B4           | B5           | В6           | В7           | C1           | C2           | C3           | C4           | D             |
| GWP- total  | kg CO <sub>2</sub> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4,17E+       | 2,05E+       | 6,35E-       | 0,00E+       | 8,93E+       | 6,25E-       | 0,00E+       | 0,00E+       | 0,00E+       | 6,54E+       | 3,67E-       | 2,77E-       | 1,60E-       | 1,91E-       | -2,90E        |
|             | eq.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 01           | 00           | 01           | 00           | 00           | 01           | 00           | 00           | 00           | 01           | 02           | 01           | 01           | 02           | -01           |
| GWP-fossil  | kg CO <sub>2</sub> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4,16E+       | 2,05E+       | 1,39E-       | 0,00E+       | 1,59E+       | 5,97E-       | 0,00E+       | 0,00E+       | 0,00E+       | 6,39E+       | 3,54E-       | 2,77E-       | 1,55E-       | 7,54E-       | -2,71E        |
|             | eq.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 01           | 00           | 01           | 00           | 01           | 01           | 00           | 00           | 00           | 01           | 02           | 01           | 01           | 03           | -01           |
| GWP-        | kg CO <sub>2</sub> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -3,59E-      | 0,00E+       | 4,76E-       | 0,00E+       | 5,25E-       | 0,00E+       | 0,00E+       | 0,00E+       | 0,00E+       | 1,34E+       | 1,23E-       | 0,00E+       | 0,00E+       | 0,00E+       | -1,01E        |
| biogenic    | eq.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 01           | 00           | 01           | 00           | 03           | 00           | 00           | 00           | 00           | 00           | 03           | 00           | 00           | 00           | -03           |
| GWP- luluc  | kg CO <sub>2</sub> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,08E-       | 1,20E-       | 5,47E-       | 0,00E+       | 1,11E+       | 4,77E-       | 0,00E+       | 0,00E+       | 0,00E+       | 1,12E-       | 8,83E-       | 1,27E-       | 2,86E-       | 1,69E-       | -1,27E        |
|             | eq.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 01           | 03           | 05           | 00           | 01           | 04           | 00           | 00           | 00           | 01           | 05           | 04           | 05           | 06           | -04           |
| ODP         | kg CFC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5,71E-       | 4,45E-       | 2,42E-       | 0,00E+       | 1,03E-       | 4,49E-       | 0,00E+       | 0,00E+       | 0,00E+       | 1,81E-       | 6,75E-       | 6,03E-       | 8,98E-       | 5,81E-       | -8,81E        |
|             | 11 -eq.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 07           | 08           | 09           | 00           | 06           | 09           | 00           | 00           | 00           | 06           | 10           | 09           | 10           | 11           | -09           |
| AP          | mol H <sup>+-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2,53E+       | 6,27E-       | 5,38E-       | 0,00E+       | 1,42E-       | 1,39E-       | 0,00E+       | 0,00E+       | 0,00E+       | 3,50E-       | 2,03E-       | 8,63E-       | 2,16E-       | 1,74E-       | -6,97E        |
|             | eq.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 00           | 03           | 04           | 00           | 01           | 02           | 00           | 00           | 00           | 01           | 04           | 04           | 04           | 05           | -04           |
| EP-         | kg P-eq.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2,00E-       | 1,73E-       | 1,27E-       | 0,00E+       | 5,92E-       | 1,02E-       | 0,00E+       | 0,00E+       | 0,00E+       | 4,24E-       | 3,35E-       | 1,91E-       | 5,30E-       | 4,60E-       | -3,97E        |
| freshwater  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 01           | 04           | 05           | 00           | 03           | 03           | 00           | 00           | 00           | 02           | 05           | 05           | 06           | 07           | -05           |
| EP- marine  | kg N-eq.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,39E-<br>01 | 2,02E-<br>03 | 4,29E-<br>04 | 0,00E+<br>00 | 1,13E-<br>01 | 1,27E-<br>03 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 6,82E-<br>02 | 3,28E-<br>05 | 2,96E-<br>04 | 8,83E-<br>05 | 3,30E-<br>05 | -2,41E<br>-04 |
| EP-         | mol N-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,86E+       | 2,13E-       | 2,05E-       | 0,00E+       | 4,62E-       | 1,22E-       | 0,00E+       | 0,00E+       | 0,00E+       | 6,54E-       | 2,97E-       | 3,12E-       | 8,88E-       | 6,72E-       | -2,39E        |
| terrestrial | eq.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 00           | 02           | 03           | 00           | 01           | 02           | 00           | 00           | 00           | 01           | 04           | 03           | 04           | 05           | -03           |
| POCP        | kg<br>NMVOC-<br>eq.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5,27E-<br>01 | 9,06E-<br>03 | 8,34E-<br>04 | 0,00E+<br>00 | 9,33E-<br>02 | 3,62E-<br>03 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 2,39E-<br>01 | 9,54E-<br>05 | 1,29E-<br>03 | 2,95E-<br>04 | 2,75E-<br>05 | -9,66E<br>-04 |
| ADPE        | kg Sb-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3,48E-       | 8,93E-       | 4,53E-       | 0,00E+       | 1,76E-       | 1,71E-       | 0,00E+       | 0,00E+       | 0,00E+       | 3,36E-       | 4,29E-       | 8,84E-       | 1,48E-       | 4,44E-       | -7,32E        |
|             | eq.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 02           | 06           | 07           | 00           | 04           | 04           | 00           | 00           | 00           | 04           | 07           | 07           | 07           | 09           | -07           |
| ADPF        | МЈ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5,37E+<br>02 | 2,88E+<br>01 | 1,60E+<br>00 | 0,00E+<br>00 | 2,69E+<br>02 | 8,05E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 1,15E+<br>03 | 8,05E-<br>01 | 3,90E+<br>00 | 5,95E-<br>01 | 5,20E-<br>02 | -3,95<br>E+00 |
| WDP         | m³                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4,13E+<br>01 | 1,19E-<br>01 | 1,45E-<br>02 | 0,00E+<br>00 | 6,47E+<br>01 | 5,41E-<br>01 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 8,77E+<br>03 | 9,07E-<br>03 | 1,48E-<br>02 | 8,76E-<br>03 | 2,20E-<br>03 | -1,93E<br>-02 |
| Caption     | GWP-total = Global Warming Potential - total; GWP-fossil = Global Warming Potential - fossil fuels; GWP-biogenic = Global Warming Potential - biogenic; GWP-luluc = Global Warming Potential - land use and land use change; ODP = Ozone Depletion; AP = Acidification; EP-freshwater = Eutrophication — aquatic freshwater; EP-marine = Eutrophication — aquatic marine; EP-terrestrial = Eutrophication — terrestrial; POCP = Photochemical zone formation; ADPm = Abiotic Depletion Potential — minerals and metals; ADPf = Abiotic Depletion Potential — fossil fuels; WDP = water use  The numbers are declared in scientific notation, fx 1,95E+02. This number can also be written as: 1,95*102 or 195, while 1,12E-11 is the same as 1,12*10-11 or 0,0000000000112. |              |              |              |              |              |              |              |              |              |              |              |              |              |              |               |
| Disclaimer  | 1 The resu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | lts of this  |              |              | cator shall  | be used v    | with care a  | s the unc    | ertainties   | on these     | results ar   | e high or a  | as there is  | limited e    | xperience    | with          |

Table 9: Additional environmental impact indicators - Group 1.

|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                               |                            | ADI          | DITION       | AL ENVI      | RONME        | NTAL II      | MPACT:       | S PER FI     | XTURE        |              |              |              |              |               |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------|
| Parameter   | Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A1-A3                                                                                         | A4                         | A5           | B1           | B2           | В3           | B4           | B5           | В6           | В7           | C1           | C2           | С3           | C4           | D             |
| PM          | Disease<br>Incidence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6,24E-<br>06                                                                                  | 1,19E-<br>07               | 1,06E-<br>08 | 0,00E+<br>00 | 2,02E-<br>06 | 1,10E-<br>07 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 3,63E-<br>06 | 7,44E-<br>10 | 1,89E-<br>08 | 3,84E-<br>09 | 3,55E-<br>10 | -9,82<br>E-09 |
| IRP         | kBq U235<br>eq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2,39E+<br>01                                                                                  | 5,74E-<br>02               | 4,03E-<br>03 | 0,00E+<br>00 | 1,26E+<br>00 | 2,67E-<br>02 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 2,43E+<br>01 | 2,27E-<br>02 | 6,30E-<br>03 | 1,46E-<br>03 | 6,57E-<br>05 | -2,21<br>E-02 |
| ETP-fw      | CTUe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3,67E+<br>03                                                                                  | 1,52E+<br>01               | 1,62E+<br>00 | 0,00E+<br>00 | 5,34E+<br>02 | 1,88E+<br>01 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 2,93E+<br>02 | 1,35E-<br>01 | 1,97E+<br>00 | 4,94E-<br>01 | 6,47E-<br>02 | -7,66<br>E-01 |
| HTP-c       | CTUh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 07 09 11 00 08 09 00 00 00 07 11 10 11 12 E-11                                                |                            |              |              |              |              |              |              |              |              |              |              |              |              |               |
| HTP-nc      | CTUh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3 36F- 2 01F- 1 99F- 0 00F+ 6 85F- 1 67F- 0 00F+ 0 00F+ 3 69F- 6 63F- 2 59F- 8 07F- 4 24F1 55 |                            |              |              |              |              |              |              |              |              |              |              |              |              |               |
| SQP         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8,78E+<br>02                                                                                  | 1,20E+<br>01               | 7,71E-<br>01 | 0,00E+<br>00 | 8,50E+<br>02 | 4,62E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 2,50E+<br>02 | 1,57E-<br>01 | 2,00E+<br>00 | 4,32E-<br>01 | 1,09E-<br>01 | -7,61<br>E-01 |
| Caption     | PM = Partic<br>HTP-nc = H<br>The number<br>11 or 0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | uman tox<br>ers are dec                                                                       | icity – nor<br>clared in s | n cancer e   | ffects; SQ   | P = Soil Q   | uality (din  | nensionle    | ss)          |              |              |              |              |              |              | •             |
| Disclaimers | 11 or 0,000000000112.  1 The results of this environmental indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator.  2 This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator. |                                                                                               |                            |              |              |              |              |              |              |              |              |              |              |              |              |               |





Table 10: Parameters describing resource use - Group 1.

|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |              |               |              | RES          | OURCE        | USE PE       | R FIXTU      | RE           |              |              |              |              |              |               |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|---------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------|
| Parameter | Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A1-A3        | A4           | A5            | B1           | B2           | В3           | B4           | B5           | В6           | В7           | C1           | C2           | С3           | C4           | D             |
| PERE      | MJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2,32E+<br>02 | 6,26E-<br>01 | -1,73E<br>+01 | 0,00E+<br>00 | 4,59E+<br>02 | 6,79E-<br>01 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 1,69E+<br>02 | 1,80E-<br>01 | 6,80E-<br>02 | 1,76E-<br>02 | 8,51E-<br>04 | -1,87E-<br>01 |
| PERM      | MJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2,02E-<br>01 | 0,00E+<br>00 | 1,73E+<br>01  | 0,00E+<br>00  |
| PERT      | МЈ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2,32E+<br>02 | 6,26E-<br>01 | 4,20E-<br>02  | 0,00E+<br>00 | 4,59E+<br>02 | 6,79E-<br>01 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 1,69E+<br>02 | 1,80E-<br>01 | 6,80E-<br>02 | 1,76E-<br>02 | 8,51E-<br>04 | -1,87E-<br>01 |
| PENRE     | МЈ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5,68E+<br>02 | 3,06E+<br>01 | 1,23E+<br>00  | 0,00E+<br>00 | 3,04E+<br>02 | 8,64E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 1,21E+<br>03 | 8,44E-<br>01 | 4,14E+<br>00 | 6,34E-<br>01 | 5,53E-<br>02 | -4,29E<br>+00 |
| PENRM     | MJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4,42E+<br>00 | 0,00E+<br>00 | 4,69E-<br>01  | 0,00E+<br>00  |
| PENRT     | МЈ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5,72E+<br>02 | 3,06E+<br>01 | 1,70E+<br>00  | 0,00E+<br>00 | 3,04E+<br>02 | 8,64E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 1,21E+<br>03 | 8,44E-<br>01 | 4,14E+<br>00 | 6,34E-<br>01 | 5,53E-<br>02 | -4,29E<br>+00 |
| SM        | kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00  | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00  |
| RSF       | MJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00  | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00  |
| NRSF      | MJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00  | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00  |
| FW        | m³                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4,24E+<br>01 | 1,18E-<br>01 | 1,45E-<br>02  | 0,00E+<br>00 | 6,27E+<br>01 | 5,31E-<br>01 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 8,36E+<br>03 | 5,81E-<br>06 | 1,54E-<br>06 | 3,61E-<br>07 | 1,58E-<br>08 | -5,62E-<br>06 |
| Caption   | PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials; PENRM = Total use of non-renewable primary energy resources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; PENRT = Total use of non-renewable secondary fuels; NRSF = Use of non-renewable secondary |              |              |               |              |              |              |              |              |              |              |              |              |              |              |               |

Table 11: End-of-life (waste categories and output flows) - Group 1.

|           |                                                                                                                                                                                                                                                                         |                           |              | WAS          | STE CAT      | EGORIE       | S AND        | OUTPU        | T FLOW       | S PER F      | IXTURE       |              |              |              |              |               |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------|
| Parameter | Unit                                                                                                                                                                                                                                                                    | A1-A3                     | A4           | A5           | B1           | B2           | В3           | B4           | B5           | В6           | В7           | C1           | C2           | С3           | C4           | D             |
| HWD       | kg                                                                                                                                                                                                                                                                      | 1,85E-<br>02              | 1,83E-<br>04 | 9,88E-<br>06 | 0,00E+<br>00 | 1,15E-<br>03 | 1,01E-<br>04 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 3,33E-<br>03 | 1,41E-<br>06 | 2,48E-<br>05 | 3,31E-<br>06 | 2,73E-<br>07 | -1,74E<br>-05 |
| NHWD      | kg                                                                                                                                                                                                                                                                      | 1,60E+<br>01              | 9,17E-<br>01 | 1,86E-<br>01 | 0,00E+<br>00 | 3,64E+<br>00 | 1,51E-<br>01 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 1,33E+<br>01 | 3,24E-<br>03 | 1,61E-<br>01 | 3,42E-<br>02 | 2,64E-<br>01 | -5,33E<br>-02 |
| RWD       | kg                                                                                                                                                                                                                                                                      | 1,30E-<br>03              | 1,42E-<br>05 | 1,01E-<br>06 | 0,00E+<br>00 | 3,15E-<br>04 | 6,87E-<br>06 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 6,22E-<br>03 | 5,81E-<br>06 | 1,54E-<br>06 | 3,61E-<br>07 | 1,58E-<br>08 | -5,62E<br>-06 |
| CRU       | kg                                                                                                                                                                                                                                                                      | 0,00E+<br>00              | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E<br>+00  |
| MFR       | kg                                                                                                                                                                                                                                                                      | 3,28E+<br>00              | 0,00E+<br>00 | 8,16E-<br>01 | 0,00E+<br>00 | 0,00E+<br>00 | 1,77E-<br>02 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 3,88E+<br>00 | 0,00E+<br>00 | 0,00E<br>+00  |
| MER       | kg                                                                                                                                                                                                                                                                      | 0,00E+<br>00              | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E<br>+00  |
| EEE       | MJ                                                                                                                                                                                                                                                                      | 2,99E-<br>03              | 0,00E+<br>00 | 1,60E-<br>01 | 0,00E+<br>00 | 0,00E+<br>00 | 1,45E-<br>02 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 1,08E-<br>01 | 0,00E+<br>00 | 0,00E<br>+00  |
| EET       | MJ                                                                                                                                                                                                                                                                      | 2,87E-<br>02              | 0,00E+<br>00 | 1,54E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 1,39E-<br>01 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 1,03E+<br>00 | 0,00E+<br>00 | 0,00E<br>+00  |
| Caption   | HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed; CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported electrical energy; EET = Exported thermal energy |                           |              |              |              |              |              |              |              |              |              |              |              |              |              |               |
|           |                                                                                                                                                                                                                                                                         | nbers are o<br>-11 or 0,0 |              |              | c notation   | , fx 1,95E-  | +02. This r  | number ca    | ın also be   | written as   | s: 1,95*10   | 2 or 195,    | while 1,12   | 2E-11 is th  | ie same as   | 5             |

Table 12: Biogenic carbon content - Group 1.

| BIOGENIC CARBOI                                   | N CONTENT PER FIXTURE |                                                  |
|---------------------------------------------------|-----------------------|--------------------------------------------------|
| Parameter                                         | Unit                  | At the factory gate                              |
| Biogenic carbon content in a product              | kg C                  | 0                                                |
| Biogenic carbon content in accompanying packaging | kg C                  | 0,54                                             |
| Note                                              | 1 kg biogenic carl    | oon is equivalent to 44/12 kg of CO <sub>2</sub> |





#### Group 2: Natural brass is represented by 321-19 - Natural brass

Table 13: Environmental impact indicators - Group 2.

|             |                      |              |                                                 |                                                        | ENV                                     | IRONM                              | ENTAL I                                | MPACT                                  | S PER F                              | IXTURE                                   |                                           |                                        |                                     |                          |                         |               |
|-------------|----------------------|--------------|-------------------------------------------------|--------------------------------------------------------|-----------------------------------------|------------------------------------|----------------------------------------|----------------------------------------|--------------------------------------|------------------------------------------|-------------------------------------------|----------------------------------------|-------------------------------------|--------------------------|-------------------------|---------------|
| Parameter   | Unit                 | A1-A3        | A4                                              | A5                                                     | B1                                      | B2                                 | В3                                     | B4                                     | B5                                   | В6                                       | В7                                        | C1                                     | C2                                  | C3                       | C4                      | D             |
| GWP- total  | kg CO <sub>2</sub> - | 5,32E+       | 3,38E+                                          | 6,62E-                                                 | 0,00E+                                  | 8,93E+                             | 6,46E-                                 | 0,00E+                                 | 0,00E+                               | 0,00E+                                   | 6,54E+                                    | 3,67E-                                 | 3,14E-                              | 2,36E-                   | 1,96E-                  | -3,41E        |
|             | eq.                  | 01           | 00                                              | 01                                                     | 00                                      | 00                                 | 01                                     | 00                                     | 00                                   | 00                                       | 01                                        | 02                                     | 01                                  | 01                       | 02                      | -01           |
| GWP-fossil  | kg CO₂-              | 5,31E+       | 3,38E+                                          | 1,46E-                                                 | 0,00E+                                  | 1,59E+                             | 6,18E-                                 | 0,00E+                                 | 0,00E+                               | 0,00E+                                   | 6,39E+                                    | 3,54E-                                 | 3,14E-                              | 2,31E-                   | 7,98E-                  | -3,21E        |
|             | eq.                  | 01           | 00                                              | 01                                                     | 00                                      | 01                                 | 01                                     | 00                                     | 00                                   | 00                                       | 01                                        | 02                                     | 01                                  | 01                       | 03                      | -01           |
| GWP-        | kg CO₂-              | -3,89E-      | 0,00E+                                          | 4,95E-                                                 | 0,00E+                                  | 5,25E-                             | 0,00E+                                 | 0,00E+                                 | 0,00E+                               | 0,00E+                                   | 1,34E+                                    | 1,23E-                                 | 0,00E+                              | 0,00E+                   | 0,00E+                  | -1,25E        |
| biogenic    | eq.                  | 01           | 00                                              | 01                                                     | 00                                      | 03                                 | 00                                     | 00                                     | 00                                   | 00                                       | 00                                        | 03                                     | 00                                  | 00                       | 00                      | -03           |
| GWP- luluc  | kg CO <sub>2</sub> - | 1,31E-       | 1,98E-                                          | 5,71E-                                                 | 0,00E+                                  | 1,11E+                             | 4,90E-                                 | 0,00E+                                 | 0,00E+                               | 0,00E+                                   | 1,12E-                                    | 8,83E-                                 | 1,44E-                              | 3,19E-                   | 1,93E-                  | -1,50E        |
|             | eq.                  | 01           | 03                                              | 05                                                     | 00                                      | 01                                 | 04                                     | 00                                     | 00                                   | 00                                       | 01                                        | 05                                     | 04                                  | 05                       | 06                      | -04           |
| ODP         | kg CFC               | 8,02E-       | 7,34E-                                          | 2,52E-                                                 | 0,00E+                                  | 1,03E-                             | 4,95E-                                 | 0,00E+                                 | 0,00E+                               | 0,00E+                                   | 1,81E-                                    | 6,75E-                                 | 6,84E-                              | 1,09E-                   | 6,73E-                  | -1,07E        |
|             | 11 -eq.              | 07           | 08                                              | 09                                                     | 00                                      | 06                                 | 09                                     | 00                                     | 00                                   | 00                                       | 06                                        | 10                                     | 09                                  | 09                       | 11                      | -08           |
| AP          | mol H <sup>+-</sup>  | 3,22E+       | 1,03E-                                          | 5,61E-                                                 | 0,00E+                                  | 1,42E-                             | 1,40E-                                 | 0,00E+                                 | 0,00E+                               | 0,00E+                                   | 3,50E-                                    | 2,03E-                                 | 9,78E-                              | 2,52E-                   | 2,00E-                  | -7,98E        |
|             | eq.                  | 00           | 02                                              | 04                                                     | 00                                      | 01                                 | 02                                     | 00                                     | 00                                   | 00                                       | 01                                        | 04                                     | 04                                  | 04                       | 05                      | -04           |
| EP-         | kg P-eq.             | 2,54E-       | 2,86E-                                          | 1,32E-                                                 | 0,00E+                                  | 5,92E-                             | 1,02E-                                 | 0,00E+                                 | 0,00E+                               | 0,00E+                                   | 4,24E-                                    | 3,35E-                                 | 2,17E-                              | 5,91E-                   | 4,99E-                  | -4,74E        |
| freshwater  |                      | 01           | 04                                              | 05                                                     | 00                                      | 03                                 | 03                                     | 00                                     | 00                                   | 00                                       | 02                                        | 05                                     | 05                                  | 06                       | 07                      | -05           |
| EP- marine  | kg N-eq.             | 1,76E-<br>01 | 3,33E-<br>03                                    | 4,47E-<br>04                                           | 0,00E+<br>00                            | 1,13E-<br>01                       | 1,29E-<br>03                           | 0,00E+<br>00                           | 0,00E+<br>00                         | 0,00E+<br>00                             | 6,82E-<br>02                              | 3,28E-<br>05                           | 3,35E-<br>04                        | 1,03E-<br>04             | 3,40E-<br>05            | -2,72E<br>-04 |
| EP-         | mol N-               | 2,37E+       | 3,51E-                                          | 2,14E-                                                 | 0,00E+                                  | 4,62E-                             | 1,24E-                                 | 0,00E+                                 | 0,00E+                               | 0,00E+                                   | 6,54E-                                    | 2,97E-                                 | 3,53E-                              | 1,04E-                   | 7,78E-                  | -2,70E        |
| terrestrial | eq.                  | 00           | 02                                              | 03                                                     | 00                                      | 01                                 | 02                                     | 00                                     | 00                                   | 00                                       | 01                                        | 04                                     | 03                                  | 03                       | 05                      | -03           |
| POCP        | kg<br>NMVOC-<br>eq.  | 6,71E-<br>01 | 1,49E-<br>02                                    | 8,69E-<br>04                                           | 0,00E+<br>00                            | 9,33E-<br>02                       | 3,71E-<br>03                           | 0,00E+<br>00                           | 0,00E+<br>00                         | 0,00E+<br>00                             | 2,39E-<br>01                              | 9,54E-<br>05                           | 1,47E-<br>03                        | 3,44E-<br>04             | 3,11E-<br>05            | -1,10E<br>-03 |
| ADPE        | kg Sb-               | 4,42E-       | 1,47E-                                          | 4,72E-                                                 | 0,00E+                                  | 1,76E-                             | 1,71E-                                 | 0,00E+                                 | 0,00E+                               | 0,00E+                                   | 3,36E-                                    | 4,29E-                                 | 1,00E-                              | 1,66E-                   | 5,08E-                  | -8,50E        |
|             | eq.                  | 02           | 05                                              | 07                                                     | 00                                      | 04                                 | 04                                     | 00                                     | 00                                   | 00                                       | 04                                        | 07                                     | 06                                  | 07                       | 09                      | -07           |
| ADPF        | MJ                   | 6,89E+<br>02 | 4,75E+<br>01                                    | 1,67E+<br>00                                           | 0,00E+<br>00                            | 2,69E+<br>02                       | 8,34E+<br>00                           | 0,00E+<br>00                           | 0,00E+<br>00                         | 0,00E+<br>00                             | 1,15E+<br>03                              | 8,05E-<br>01                           | 4,42E+<br>00                        | 6,80E-<br>01             | 6,02E-<br>02            | -4,73<br>E+00 |
| WDP         | m³                   | 5,30E+<br>01 | 1,97E-<br>01                                    | 1,52E-<br>02                                           | 0,00E+<br>00                            | 6,47E+<br>01                       | 5,42E-<br>01                           | 0,00E+<br>00                           | 0,00E+<br>00                         | 0,00E+<br>00                             | 8,77E+<br>03                              | 9,07E-<br>03                           | 1,68E-<br>02                        | 9,97E-<br>03             | 2,56E-<br>03            | -2,28E<br>-02 |
| Caption     | GWP-lulu             | ers are de   | Warming<br>EP-maring<br>oletion Po<br>clared in | Potential<br>e = Eutrop<br>tential – r<br>scientific r | - land use<br>phication -<br>minerals a | and land<br>aquatic i<br>nd metals | use chang<br>marine; Ef<br>s; ADPf = A | ge; ODP =<br>P-terrestri<br>Abiotic De | Ozone De<br>al = Eutro<br>pletion Po | epletion; A<br>phication<br>otential – f | AP = Acidif<br>– terrestr<br>fossil fuels | ication; El<br>ial; POCP<br>;; WDP = v | P-freshwa<br>= Photoch<br>vater use | ter = Eutro<br>emical zo | ophication<br>ne format | 1 –           |
| Disclaimer  | 1 The resu           | ults of this |                                                 |                                                        | cator shal                              | l be used                          | with care                              | as the un                              | certaintie                           | s on these                               | results ar                                | e high or                              | as there i                          | s limited e              | experience              | ed with       |

Table 14: Additional environmental impacts - Group 2.

|             |                                                                           |                           |                            | ADI          | DITION       | AL ENVI      | RONME        | NTAL II                  | MPACT:                  | S PER FI               | XTURE                    |                        |              |              |              |               |
|-------------|---------------------------------------------------------------------------|---------------------------|----------------------------|--------------|--------------|--------------|--------------|--------------------------|-------------------------|------------------------|--------------------------|------------------------|--------------|--------------|--------------|---------------|
| Parameter   | Unit                                                                      | A1-A3                     | A4                         | A5           | B1           | B2           | В3           | B4                       | B5                      | В6                     | В7                       | C1                     | C2           | C3           | C4           | D             |
| PM          | Disease<br>Incidence                                                      | 7,90E-<br>06              | 1,97E-<br>07               | 1,10E-<br>08 | 0,00E+<br>00 | 2,02E-<br>06 | 1,11E-<br>07 | 0,00E+<br>00             | 0,00E+<br>00            | 0,00E+<br>00           | 3,63E-<br>06             | 7,44E-<br>10           | 2,14E-<br>08 | 4,39E-<br>09 | 4,12E-<br>10 | -1,08<br>E-08 |
| IRP         | kBq U235<br>eq                                                            | 2,51E+<br>01              | 9,47E-<br>02               | 4,20E-<br>03 | 0,00E+<br>00 | 1,26E+<br>00 | 2,73E-<br>02 | 0,00E+<br>00             | 0,00E+<br>00            | 0,00E+<br>00           | 2,43E+<br>01             | 2,27E-<br>02           | 7,14E-<br>03 | 1,62E-<br>03 | 7,40E-<br>05 | -2,67<br>E-02 |
| ETP-fw      | CTUe                                                                      | 4,66E+<br>03              | 2,51E+<br>01               | 1,69E+<br>00 | 0,00E+<br>00 | 5,34E+<br>02 | 1,89E+<br>01 | 0,00E+<br>00             | 0,00E+<br>00            | 0,00E+<br>00           | 2,93E+<br>02             | 1,35E-<br>01           | 2,24E+<br>00 | 6,40E-<br>01 | 7,00E-<br>02 | -8,62<br>E-01 |
| HTP-c       | CTUh                                                                      | 5,17E-<br>07              | 1,73E-<br>09               | 8,84E-<br>11 | 0,00E+<br>00 | 2,96E-<br>08 | 2,06E-<br>09 | 0,00E+<br>00             | 0,00E+<br>00            | 0,00E+<br>00           | 2,82E-<br>07             | 1,66E-<br>11           | 1,32E-<br>10 | 4,29E-<br>11 | 2,02E-<br>12 | -1,12<br>E-10 |
| HTP-nc      | CTUh                                                                      | 4,28E-<br>05              | 3,32E-<br>08               | 2,07E-<br>09 | 0,00E+<br>00 | 6,85E-<br>07 | 1,67E-<br>07 | 0,00E+<br>00             | 0,00E+<br>00            | 0,00E+<br>00           | 3,69E-<br>06             | 6,63E-<br>10           | 2,93E-<br>09 | 9,05E-<br>10 | 4,48E-<br>11 | -1,80<br>E-09 |
| SQP         | -                                                                         | 1,11E+<br>03              | 1,98E+<br>01               | 8,05E-<br>01 | 0,00E+<br>00 | 8,50E+<br>02 | 4,74E+<br>00 | 0,00E+<br>00             | 0,00E+<br>00            | 0,00E+<br>00           | 2,50E+<br>02             | 1,57E-<br>01           | 2,27E+<br>00 | 4,91E-<br>01 | 1,26E-<br>01 | -8,61<br>E-01 |
| Caption     | PM = Partic<br>HTP-nc = F<br>The number<br>or 0,00000                     | luman tox<br>rs are dec   | cicity – no<br>lared in sc | n cancer e   | effects; SC  | P = Soil C   | uality (di   | mensionle                | ss)                     |                        |                          |                        |              |              |              |               |
| Disclaimers | 1 The result<br>indicator.<br>2 This impace<br>effects due<br>radiation f | ct categor<br>e to possil | y deals m                  | ainly with   | the event    | tual impac   | ct of low o  | lose ionizi<br>due to ra | ng radiati<br>dioactive | on on hur<br>waste dis | nan healtl<br>posal in u | h of the n<br>ndergrou | uclear fue   | el cycle. It | does not d   | onsider       |





Table 15: Parameters describing resource use - Group 2.

|           |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |                                                    |                                                     | RES                                               | OURCE                                 | USE PEI                             | R FIXTU                             | RE                                    |                                       |                                      |                                    |                                       |                                       |                   |
|-----------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------|---------------------------------------------------|---------------------------------------|-------------------------------------|-------------------------------------|---------------------------------------|---------------------------------------|--------------------------------------|------------------------------------|---------------------------------------|---------------------------------------|-------------------|
| Parameter | Unit                                                   | A1-A3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A4                                                              | A5                                                 | B1                                                  | B2                                                | В3                                    | B4                                  | B5                                  | В6                                    | В7                                    | C1                                   | C2                                 | C3                                    | C4                                    | D                 |
| PERE      | MJ                                                     | 3,64E+<br>02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,03E+<br>00                                                    | -1,80E<br>+01                                      | 0,00E+<br>00                                        | 4,59E+<br>02                                      | 6,85E-<br>01                          | 0,00E+<br>00                        | 0,00E+<br>00                        | 0,00E+<br>00                          | 1,69E+<br>02                          | 1,80E-<br>01                         | 7,71E-<br>02                       | 1,96E-<br>02                          | 9,62E-<br>04                          | -2,25E-<br>01     |
| PERM      | MJ                                                     | 2,02E-<br>01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,00E+<br>00                                                    | 1,81E+<br>01                                       | 0,00E+<br>00                                        | 0,00E+<br>00                                      | 0,00E+<br>00                          | 0,00E+<br>00                        | 0,00E+<br>00                        | 0,00E+<br>00                          | 0,00E+<br>00                          | 0,00E+<br>00                         | 0,00E+<br>00                       | 0,00E+<br>00                          | 0,00E+<br>00                          | 0,00E+<br>00      |
| PERT      | MJ                                                     | 3,65E+<br>02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,03E+<br>00                                                    | 4,38E-<br>02                                       | 0,00E+<br>00                                        | 4,59E+<br>02                                      | 6,85E-<br>01                          | 0,00E+<br>00                        | 0,00E+<br>00                        | 0,00E+<br>00                          | 1,69E+<br>02                          | 1,80E-<br>01                         | 7,71E-<br>02                       | 1,96E-<br>02                          | 9,62E-<br>04                          | -2,25E-<br>01     |
| PENRE     | MJ                                                     | 7,29E+<br>02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5,04E+<br>01                                                    | 1,25E+<br>00                                       | 0,00E+<br>00                                        | 3,04E+<br>02                                      | 8,95E+<br>00                          | 0,00E+<br>00                        | 0,00E+<br>00                        | 0,00E+<br>00                          | 1,21E+<br>03                          | 8,44E-<br>01                         | 4,69E+<br>00                       | 7,24E-<br>01                          | 6,41E-<br>02                          | -5,14E<br>+00     |
| PENRM     | MJ                                                     | 5,99E+<br>00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,00E+<br>00                                                    | 5,26E-<br>01                                       | 0,00E+<br>00                                        | 0,00E+<br>00                                      | 0,00E+<br>00                          | 0,00E+<br>00                        | 0,00E+<br>00                        | 0,00E+<br>00                          | 0,00E+<br>00                          | 0,00E+<br>00                         | 0,00E+<br>00                       | 0,00E+<br>00                          | 0,00E+<br>00                          | 0,00E+<br>00      |
| PENRT     | MJ                                                     | 7,35E+<br>02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5,04E+<br>01                                                    | 1,77E+<br>00                                       | 0,00E+<br>00                                        | 3,04E+<br>02                                      | 8,95E+<br>00                          | 0,00E+<br>00                        | 0,00E+<br>00                        | 0,00E+<br>00                          | 1,21E+<br>03                          | 8,44E-<br>01                         | 4,69E+<br>00                       | 7,24E-<br>01                          | 6,41E-<br>02                          | -5,14E<br>+00     |
| SM        | kg                                                     | 0,00E+<br>00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,00E+<br>00                                                    | 0,00E+<br>00                                       | 0,00E+<br>00                                        | 0,00E+<br>00                                      | 0,00E+<br>00                          | 0,00E+<br>00                        | 0,00E+<br>00                        | 0,00E+<br>00                          | 0,00E+<br>00                          | 0,00E+<br>00                         | 0,00E+<br>00                       | 0,00E+<br>00                          | 0,00E+<br>00                          | 0,00E+<br>00      |
| RSF       | MJ                                                     | 0,00E+<br>00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,00E+<br>00                                                    | 0,00E+<br>00                                       | 0,00E+<br>00                                        | 0,00E+<br>00                                      | 0,00E+<br>00                          | 0,00E+<br>00                        | 0,00E+<br>00                        | 0,00E+<br>00                          | 0,00E+<br>00                          | 0,00E+<br>00                         | 0,00E+<br>00                       | 0,00E+<br>00                          | 0,00E+<br>00                          | 0,00E+<br>00      |
| NRSF      | MJ                                                     | 0,00E+<br>00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,00E+<br>00                                                    | 0,00E+<br>00                                       | 0,00E+<br>00                                        | 0,00E+<br>00                                      | 0,00E+<br>00                          | 0,00E+<br>00                        | 0,00E+<br>00                        | 0,00E+<br>00                          | 0,00E+<br>00                          | 0,00E+<br>00                         | 0,00E+<br>00                       | 0,00E+<br>00                          | 0,00E+<br>00                          | 0,00E+<br>00      |
| FW        | m³                                                     | 5,43E+<br>01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,95E-<br>01                                                    | 1,52E-<br>02                                       | 0,00E+<br>00                                        | 6,27E+<br>01                                      | 5,32E-<br>01                          | 0,00E+<br>00                        | 0,00E+<br>00                        | 0,00E+<br>00                          | 8,36E+<br>03                          | 5,81E-<br>06                         | 1,75E-<br>06                       | 4,02E-<br>07                          | 1,78E-<br>08                          | -6,82E-<br>06     |
| Caption   | resource<br>renewak<br>Total use<br>renewak<br>The num | Use of reners used as oble primary of non-related second of the second o | raw mate<br>y energy r<br>enewable<br>ary fuels;<br>declared ir | rials; PERT<br>esources u<br>primary e<br>FW = Net | = Total u<br>used as ra<br>nergy reso<br>use of fre | se of rene<br>w materia<br>ources; SM<br>sh water | wable prii<br>ls; PENRM<br>1 = Use of | mary ener<br>1 = Use of<br>secondar | gy resour<br>non-rene<br>y material | ces; PENR<br>wable prir<br>; RSF = Us | E = Use of<br>mary ener<br>e of renev | non-rene<br>gy resourc<br>vable secc | wable princes used a<br>ondary fue | mary ener<br>s raw mat<br>els; NRSF = | gy exclud<br>erials; PEN<br>Use of no | ing non-<br>NRT = |

Table 16: End-of-life (waste categories and output flows) - Group 2.

|           |      |                                                                                                         |              | WAS          | STE CAT      | EGORIE       | S AND        | OUTPU        | T FLOW       | S PER F      | IXTURE                   |              |              |              |              |               |
|-----------|------|---------------------------------------------------------------------------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------------------|--------------|--------------|--------------|--------------|---------------|
| Parameter | Unit | A1-A3                                                                                                   | A4           | A5           | B1           | B2           | В3           | B4           | B5           | В6           | В7                       | C1           | C2           | С3           | C4           | D             |
| HWD       | kg   | 2,36E-<br>02                                                                                            | 3,01E-<br>04 | 1,03E-<br>05 | 0,00E+<br>00 | 1,15E-<br>03 | 1,03E-<br>04 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 3,33E-<br>03             | 1,41E-<br>06 | 2,81E-<br>05 | 3,85E-<br>06 | 3,15E-<br>07 | -2,06E<br>-05 |
| NHWD      | kg   | 2,02E+<br>01                                                                                            | 1,51E+<br>00 | 1,94E-<br>01 | 0,00E+<br>00 | 3,64E+<br>00 | 1,60E-<br>01 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 1,33E+<br>01             | 3,24E-<br>03 | 1,82E-<br>01 | 4,04E-<br>02 | 3,05E-<br>01 | -5,97E<br>-02 |
| RWD       | kg   | 1,63E-<br>03                                                                                            | 2,34E-<br>05 | 1,05E-<br>06 | 0,00E+<br>00 | 3,15E-<br>04 | 7,01E-<br>06 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 6,22E-<br>03             | 5,81E-<br>06 | 1,75E-<br>06 | 4,02E-<br>07 | 1,78E-<br>08 | -6,82E<br>-06 |
| CRU       | kg   | 4 44F+ 0 00F+ 8 50F- 0 00F+ 0 00F+ 1 77F- 0 00F+ 0 00F+ 0 00F+ 0 00F+ 0 00F+ 0 00F+ 4 39F+ 0 00F+ 0 00F |              |              |              |              |              |              |              |              |                          |              |              |              |              |               |
| MFR       | kg   | 4,44E+<br>00                                                                                            | 0,00E+<br>00 | 8,50E-<br>01 | 0,00E+<br>00 | 0,00E+<br>00 | 1,77E-<br>02 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00             | 0,00E+<br>00 | 0,00E+<br>00 | 4,39E+<br>00 | 0,00E+<br>00 | 0,00E<br>+00  |
| MER       | kg   | 0,00E+<br>00                                                                                            | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00             | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E<br>+00  |
| EEE       | MJ   | 2,99E-<br>03                                                                                            | 0,00E+<br>00 | 1,68E-<br>01 | 0,00E+<br>00 | 0,00E+<br>00 | 1,45E-<br>02 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00             | 0,00E+<br>00 | 0,00E+<br>00 | 1,68E-<br>01 | 0,00E+<br>00 | 0,00E<br>+00  |
| EET       | MJ   | 2,87E-<br>02                                                                                            | 0,00E+<br>00 | 1,61E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 1,39E-<br>01 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00             | 0,00E+<br>00 | 0,00E+<br>00 | 1,61E+<br>00 | 0,00E+<br>00 | 0,00E<br>+00  |
| Caption   |      | Hazardous<br>Is for recy                                                                                |              |              |              |              |              |              |              |              |                          |              |              | •            | or re-use;   | MFR =         |
| Сарион    |      | nbers are o<br>-11 or 0,0                                                                               |              |              | c notation   | , fx 1,95E-  | +02. This r  | number ca    | ın also be   | written as   | s: 1,9 <mark>5*10</mark> | 2 or 195,    | while 1,12   | E-11 is th   | e same as    | ,             |

Table 17: Biogenic carbon content - Group 2.

| BIOGENIC CARBO                                    | N CONTENT PER FIXTURE |                                                  |
|---------------------------------------------------|-----------------------|--------------------------------------------------|
| Parameter                                         | Unit                  | At the factory gate                              |
| Biogenic carbon content in a product              | kg C                  | 0                                                |
| Biogenic carbon content in accompanying packaging | kg C                  | 0,56                                             |
| Note                                              | 1 kg biogenic carl    | oon is equivalent to 44/12 kg of CO <sub>2</sub> |





#### Group 3: Stainless steel is represented by 321L-40

Table 18: Environmental impact indicators - Group 3.

|             |                        |              |                                                 |                                                        | ENV                                     | IRONM                                | ENTAL I                                | MPACT                                  | S PER F                              | IXTURE                                 |                                         |                                        |                                     |                          |                         |               |
|-------------|------------------------|--------------|-------------------------------------------------|--------------------------------------------------------|-----------------------------------------|--------------------------------------|----------------------------------------|----------------------------------------|--------------------------------------|----------------------------------------|-----------------------------------------|----------------------------------------|-------------------------------------|--------------------------|-------------------------|---------------|
| Parameter   | Unit                   | A1-A3        | A4                                              | A5                                                     | B1                                      | B2                                   | В3                                     | B4                                     | B5                                   | В6                                     | В7                                      | C1                                     | C2                                  | C3                       | C4                      | D             |
| GWP- total  | kg CO <sub>2</sub> -   | 3,97E+       | 2,09E+                                          | 6,35E-                                                 | 0,00E+                                  | 8,93E+                               | 6,25E-                                 | 0,00E+                                 | 0,00E+                               | 0,00E+                                 | 6,54E+                                  | 3,67E-                                 | 2,83E-                              | 1,61E-                   | 1,91E-                  | -2,90E        |
|             | eq.                    | 01           | 00                                              | 01                                                     | 00                                      | 00                                   | 01                                     | 00                                     | 00                                   | 00                                     | 01                                      | 02                                     | 01                                  | 01                       | 02                      | -01           |
| GWP-fossil  | kg CO <sub>2</sub> -   | 3,96E+       | 2,08E+                                          | 1,39E-                                                 | 0,00E+                                  | 1,59E+                               | 5,97E-                                 | 0,00E+                                 | 0,00E+                               | 0,00E+                                 | 6,39E+                                  | 3,54E-                                 | 2,82E-                              | 1,56E-                   | 7,54E-                  | -2,72E        |
|             | eq.                    | 01           | 00                                              | 01                                                     | 00                                      | 01                                   | 01                                     | 00                                     | 00                                   | 00                                     | 01                                      | 02                                     | 01                                  | 01                       | 03                      | -01           |
| GWP-        | kg CO <sub>2</sub> -   | -3,58E-      | 0,00E+                                          | 4,76E-                                                 | 0,00E+                                  | 5,25E-                               | 0,00E+                                 | 0,00E+                                 | 0,00E+                               | 0,00E+                                 | 1,34E+                                  | 1,23E-                                 | 0,00E+                              | 0,00E+                   | 0,00E+                  | -1,01E        |
| biogenic    | eq.                    | 01           | 00                                              | 01                                                     | 00                                      | 03                                   | 00                                     | 00                                     | 00                                   | 00                                     | 00                                      | 03                                     | 00                                  | 00                       | 00                      | -03           |
| GWP- luluc  | kg CO <sub>2</sub> -   | 9,46E-       | 1,22E-                                          | 5,47E-                                                 | 0,00E+                                  | 1,11E+                               | 4,77E-                                 | 0,00E+                                 | 0,00E+                               | 0,00E+                                 | 1,12E-                                  | 8,83E-                                 | 1,29E-                              | 2,90E-                   | 1,68E-                  | -1,27E        |
|             | eq.                    | 02           | 03                                              | 05                                                     | 00                                      | 01                                   | 04                                     | 00                                     | 00                                   | 00                                     | 01                                      | 05                                     | 04                                  | 05                       | 06                      | -04           |
| ODP         | kg CFC                 | 5,44E-       | 4,53E-                                          | 2,42E-                                                 | 0,00E+                                  | 1,03E-                               | 4,49E-                                 | 0,00E+                                 | 0,00E+                               | 0,00E+                                 | 1,81E-                                  | 6,75E-                                 | 6,15E-                              | 9,14E-                   | 5,79E-                  | -8,83E        |
|             | 11 -eq.                | 07           | 08                                              | 09                                                     | 00                                      | 06                                   | 09                                     | 00                                     | 00                                   | 00                                     | 06                                      | 10                                     | 09                                  | 10                       | 11                      | -09           |
| AP          | mol H <sup>+-</sup>    | 1,90E+       | 6,38E-                                          | 5,38E-                                                 | 0,00E+                                  | 1,42E-                               | 1,39E-                                 | 0,00E+                                 | 0,00E+                               | 0,00E+                                 | 3,50E-                                  | 2,03E-                                 | 8,79E-                              | 2,20E-                   | 1,73E-                  | -7,01E        |
|             | eq.                    | 00           | 03                                              | 04                                                     | 00                                      | 01                                   | 02                                     | 00                                     | 00                                   | 00                                     | 01                                      | 04                                     | 04                                  | 04                       | 05                      | -04           |
| EP-         | kg P-eq.               | 1,49E-       | 1,76E-                                          | 1,27E-                                                 | 0,00E+                                  | 5,92E-                               | 1,02E-                                 | 0,00E+                                 | 0,00E+                               | 0,00E+                                 | 4,24E-                                  | 3,35E-                                 | 1,95E-                              | 5,36E-                   | 4,59E-                  | -3,98E        |
| freshwater  |                        | 01           | 04                                              | 05                                                     | 00                                      | 03                                   | 03                                     | 00                                     | 00                                   | 00                                     | 02                                      | 05                                     | 05                                  | 06                       | 07                      | -05           |
| EP- marine  | kg N-eq.               | 1,11E-<br>01 | 2,05E-<br>03                                    | 4,29E-<br>04                                           | 0,00E+<br>00                            | 1,13E-<br>01                         | 1,27E-<br>03                           | 0,00E+<br>00                           | 0,00E+<br>00                         | 0,00E+<br>00                           | 6,82E-<br>02                            | 3,28E-<br>05                           | 3,01E-<br>04                        | 8,98E-<br>05             | 3,30E-<br>05            | -2,43E<br>-04 |
| EP-         | mol N-                 | 1,46E+       | 2,16E-                                          | 2,05E-                                                 | 0,00E+                                  | 4,62E-                               | 1,22E-                                 | 0,00E+                                 | 0,00E+                               | 0,00E+                                 | 6,54E-                                  | 2,97E-                                 | 3,18E-                              | 9,03E-                   | 6,69E-                  | -2,40E        |
| terrestrial | eq.                    | 00           | 02                                              | 03                                                     | 00                                      | 01                                   | 02                                     | 00                                     | 00                                   | 00                                     | 01                                      | 04                                     | 03                                  | 04                       | 05                      | -03           |
| POCP        | kg<br>NMVOC-<br>eq.    | 4,19E-<br>01 | 9,22E-<br>03                                    | 8,34E-<br>04                                           | 0,00E+<br>00                            | 9,33E-<br>02                         | 3,62E-<br>03                           | 0,00E+<br>00                           | 0,00E+<br>00                         | 0,00E+<br>00                           | 2,39E-<br>01                            | 9,54E-<br>05                           | 1,32E-<br>03                        | 3,00E-<br>04             | 2,74E-<br>05            | -9,71E<br>-04 |
| ADPE        | kg Sb-                 | 2,57E-       | 9,08E-                                          | 4,53E-                                                 | 0,00E+                                  | 1,76E-                               | 1,71E-                                 | 0,00E+                                 | 0,00E+                               | 0,00E+                                 | 3,36E-                                  | 4,29E-                                 | 9,00E-                              | 1,50E-                   | 4,43E-                  | -7,34E        |
|             | eq.                    | 02           | 06                                              | 07                                                     | 00                                      | 04                                   | 04                                     | 00                                     | 00                                   | 00                                     | 04                                      | 07                                     | 07                                  | 07                       | 09                      | -07           |
| ADPF        | MJ                     | 5,04E+<br>02 | 2,93E+<br>01                                    | 1,60E+<br>00                                           | 0,00E+<br>00                            | 2,69E+<br>02                         | 8,05E+<br>00                           | 0,00E+<br>00                           | 0,00E+<br>00                         | 0,00E+<br>00                           | 1,15E+<br>03                            | 8,05E-<br>01                           | 3,97E+<br>00                        | 6,06E-<br>01             | 5,18E-<br>02            | -3,96<br>E+00 |
| WDP         | m³                     | 3,24E+<br>01 | 1,21E-<br>01                                    | 1,45E-<br>02                                           | 0,00E+<br>00                            | 6,47E+<br>01                         | 5,41E-<br>01                           | 0,00E+<br>00                           | 0,00E+<br>00                         | 0,00E+<br>00                           | 8,77E+<br>03                            | 9,07E-<br>03                           | 1,51E-<br>02                        | 8,81E-<br>03             | 2,20E-<br>03            | -1,94E<br>-02 |
| Caption     | GWP-lulu<br>aquatic fr |              | Warming<br>EP-maring<br>oletion Po<br>clared in | Potential<br>e = Eutrop<br>tential – r<br>scientific r | - land use<br>phication -<br>minerals a | and land<br>aquatic ind<br>ad metals | use chang<br>marine; EF<br>s; ADPf = A | ge; ODP =<br>P-terrestri<br>Abiotic De | Ozone De<br>al = Eutro<br>pletion Po | pletion; A<br>phication<br>tential – f | P = Acidif<br>– terrestr<br>ossil fuels | ication; El<br>ial; POCP<br>:; WDP = v | P-freshwa<br>= Photoch<br>vater use | ter = Eutro<br>emical zo | ophication<br>ne format | n –           |
| Disclaimer  | 1 The resu             | ults of this |                                                 |                                                        | cator shal                              | l be used                            | with care                              | as the un                              | certaintie                           | s on these                             | results ar                              | e high or                              | as there is                         | limited e                | experience              | d with        |

Table 19: Additional environmental impacts - Group 3.

|             |                                                             |                                                                                                                                                         |                            | ADI                      | DITIONA      | AL ENVI                  | RONME                    | NTAL II                 | MPACT:       | S PER FI     | XTURE        |              |                         |              |              |               |
|-------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------|--------------|--------------------------|--------------------------|-------------------------|--------------|--------------|--------------|--------------|-------------------------|--------------|--------------|---------------|
| Parameter   | Unit                                                        | A1-A3                                                                                                                                                   | A4                         | A5                       | B1           | B2                       | В3                       | B4                      | B5           | В6           | В7           | C1           | C2                      | С3           | C4           | D             |
| PM          | Disease<br>Incidence                                        | 5,29E-<br>06                                                                                                                                            | 1,21E-<br>07               | 1,06E-<br>08             | 0,00E+<br>00 | 2,02E-<br>06             | 1,10E-<br>07             | 0,00E+<br>00            | 0,00E+<br>00 | 0,00E+<br>00 | 3,63E-<br>06 | 7,44E-<br>10 | 1,93E-<br>08            | 3,91E-<br>09 | 3,54E-<br>10 | -9,88<br>E-09 |
| IRP         | kBq U235<br>eq                                              | 2,34E+<br>01                                                                                                                                            | 5,84E-<br>02               | 4,03E-<br>03             | 0,00E+<br>00 | 1,26E+<br>00             | 2,67E-<br>02             | 0,00E+<br>00            | 0,00E+<br>00 | 0,00E+<br>00 | 2,43E+<br>01 | 2,27E-<br>02 | 6,42E-<br>03            | 1,47E-<br>03 | 6,55E-<br>05 | -2,21<br>E-02 |
| ETP-fw      | CTUe                                                        | 2,72E+<br>03                                                                                                                                            | 1,55E+<br>01               | 1,62E+<br>00             | 0,00E+<br>00 | 5,34E+<br>02             | 1,88E+<br>01             | 0,00E+<br>00            | 0,00E+<br>00 | 0,00E+<br>00 | 2,93E+<br>02 | 1,35E-<br>01 | 2,01E+<br>00            | 4,99E-<br>01 | 6,47E-<br>02 | -7,71<br>E-01 |
| НТР-с       | CTUh                                                        | 07 09 11 00 08 09 00 00 00 07 11 10 11 12 E-10  Uh 2,48E- 2,04E- 1,99E- 0,00E+ 6,85E- 1,67E- 0,00E+ 0,00E+ 0,00E+ 3,69E- 6,63E- 2,64E- 8,15E- 4,24E1,56 |                            |                          |              |                          |                          |                         |              |              |              |              |                         |              |              |               |
| HTP-nc      | CTUh                                                        | 07 09 11 00 08 09 00 00 00 07 11 10 11 12 E-10                                                                                                          |                            |                          |              |                          |                          |                         |              |              |              |              |                         |              |              |               |
| SQP         | -                                                           | 7,01E+<br>02                                                                                                                                            | 1,22E+<br>01               | 7,71E-<br>01             | 0,00E+<br>00 | 8,50E+<br>02             | 4,62E+<br>00             | 0,00E+<br>00            | 0,00E+<br>00 | 0,00E+<br>00 | 2,50E+<br>02 | 1,57E-<br>01 | 2,04E+<br>00            | 4,40E-<br>01 | 1,08E-<br>01 | -7,69<br>E-01 |
| Caption     | PM = Partic<br>HTP-nc = H<br>The number<br>11 or 0,000      | uman tox<br>ers are dec                                                                                                                                 | icity – nor<br>clared in s | n cancer e               | ffects; SQ   | P = Soil Q               | uality (din              | nensionle               | ss)          |              |              |              |                         |              |              |               |
| Disclaimers | 1 The resulthe indicat 2 This impactonsider elionizing radi | or.<br>act catego<br>ffects due                                                                                                                         | ry deals n<br>to possib    | nainly wit<br>le nuclear | n the ever   | ntual impa<br>s, occupat | act of low<br>ional expo | dose ioniz<br>osure nor | ing radiat   | ion on hu    | man heal     | th of the i  | nuclear fu<br>ndergroun | el cycle. It | does not     |               |





Table 20: Parameters describing resource use - Group 3.

|           |                                                        |                                                                                          |                                                             |                                                    |                                                        | RES                                               | OURCE                                 | USE PEI                             | R FIXTU                             | RE                                    |                                       |                                      |                                      |                                       |                                        |                          |
|-----------|--------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------|---------------------------------------------------|---------------------------------------|-------------------------------------|-------------------------------------|---------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|----------------------------------------|--------------------------|
| Parameter | Unit                                                   | A1-A3                                                                                    | A4                                                          | A5                                                 | B1                                                     | B2                                                | В3                                    | B4                                  | B5                                  | В6                                    | В7                                    | C1                                   | C2                                   | СЗ                                    | C4                                     | D                        |
| PERE      | MJ                                                     | 2,46E+<br>02                                                                             | 6,37E-<br>01                                                | -1,73E<br>+01                                      | 0,00E+<br>00                                           | 4,59E+<br>02                                      | 6,79E-<br>01                          | 0,00E+<br>00                        | 0,00E+<br>00                        | 0,00E+<br>00                          | 1,69E+<br>02                          | 1,80E-<br>01                         | 6,93E-<br>02                         | 1,78E-<br>02                          | 8,49E-<br>04                           | -1,87E-<br>01            |
| PERM      | MJ                                                     | 2,02E-<br>01                                                                             | 0,00E+<br>00                                                | 1,73E+<br>01                                       | 0,00E+<br>00                                           | 0,00E+<br>00                                      | 0,00E+<br>00                          | 0,00E+<br>00                        | 0,00E+<br>00                        | 0,00E+<br>00                          | 0,00E+<br>00                          | 0,00E+<br>00                         | 0,00E+<br>00                         | 0,00E+<br>00                          | 0,00E+<br>00                           | 0,00E+<br>00             |
| PERT      | MJ                                                     | 2,47E+<br>02                                                                             | 6,37E-<br>01                                                | 4,20E-<br>02                                       | 0,00E+<br>00                                           | 4,59E+<br>02                                      | 6,79E-<br>01                          | 0,00E+<br>00                        | 0,00E+<br>00                        | 0,00E+<br>00                          | 1,69E+<br>02                          | 1,80E-<br>01                         | 6,93E-<br>02                         | 1,78E-<br>02                          | 8,49E-<br>04                           | -1,87E-<br>01            |
| PENRE     | MJ                                                     | 5,33E+<br>02                                                                             | 3,11E+<br>01                                                | 1,23E+<br>00                                       | 0,00E+<br>00                                           | 3,04E+<br>02                                      | 8,64E+<br>00                          | 0,00E+<br>00                        | 0,00E+<br>00                        | 0,00E+<br>00                          | 1,21E+<br>03                          | 8,44E-<br>01                         | 4,22E+<br>00                         | 6,45E-<br>01                          | 5,51E-<br>02                           | -4,30E<br>+00            |
| PENRM     | MJ                                                     | 4,42E+<br>00                                                                             | 0,00E+<br>00                                                | 4,69E-<br>01                                       | 0,00E+<br>00                                           | 0,00E+<br>00                                      | 0,00E+<br>00                          | 0,00E+<br>00                        | 0,00E+<br>00                        | 0,00E+<br>00                          | 0,00E+<br>00                          | 0,00E+<br>00                         | 0,00E+<br>00                         | 0,00E+<br>00                          | 0,00E+<br>00                           | 0,00E+<br>00             |
| PENRT     | MJ                                                     | 5,37E+<br>02                                                                             | 3,11E+<br>01                                                | 1,70E+<br>00                                       | 0,00E+<br>00                                           | 3,04E+<br>02                                      | 8,64E+<br>00                          | 0,00E+<br>00                        | 0,00E+<br>00                        | 0,00E+<br>00                          | 1,21E+<br>03                          | 8,44E-<br>01                         | 4,22E+<br>00                         | 6,45E-<br>01                          | 5,51E-<br>02                           | -4,30E<br>+00            |
| SM        | kg                                                     |                                                                                          |                                                             |                                                    |                                                        |                                                   |                                       |                                     |                                     |                                       |                                       |                                      |                                      |                                       |                                        |                          |
| RSF       | MJ                                                     | 0,00E+<br>00                                                                             | 0,00E+<br>00                                                | 0,00E+<br>00                                       | 0,00E+<br>00                                           | 0,00E+<br>00                                      | 0,00E+<br>00                          | 0,00E+<br>00                        | 0,00E+<br>00                        | 0,00E+<br>00                          | 0,00E+<br>00                          | 0,00E+<br>00                         | 0,00E+<br>00                         | 0,00E+<br>00                          | 0,00E+<br>00                           | 0,00E+<br>00             |
| NRSF      | MJ                                                     | 0,00E+<br>00                                                                             | 0,00E+<br>00                                                | 0,00E+<br>00                                       | 0,00E+<br>00                                           | 0,00E+<br>00                                      | 0,00E+<br>00                          | 0,00E+<br>00                        | 0,00E+<br>00                        | 0,00E+<br>00                          | 0,00E+<br>00                          | 0,00E+<br>00                         | 0,00E+<br>00                         | 0,00E+<br>00                          | 0,00E+<br>00                           | 0,00E+<br>00             |
| FW        | m³                                                     | 3,38E+<br>01                                                                             | 1,20E-<br>01                                                | 1,45E-<br>02                                       | 0,00E+<br>00                                           | 6,27E+<br>01                                      | 5,31E-<br>01                          | 0,00E+<br>00                        | 0,00E+<br>00                        | 0,00E+<br>00                          | 8,36E+<br>03                          | 5,81E-<br>06                         | 1,57E-<br>06                         | 3,65E-<br>07                          | 1,57E-<br>08                           | -5,63E-<br>06            |
| Caption   | resource<br>renewal<br>Total use<br>renewal<br>The num | Use of reners used as oble primary e of non-reple second abers are condessed as objects. | raw mate<br>y energy renewable<br>ary fuels;<br>declared ir | rials; PERT<br>esources (<br>primary e<br>FW = Net | = Total used as rage<br>nergy resources<br>use of fres | se of rene<br>w materia<br>ources; SN<br>sh water | wable prii<br>ls; PENRM<br>1 = Use of | mary ener<br>I = Use of<br>secondar | gy resour<br>non-rene<br>y material | ces; PENR<br>wable prir<br>; RSF = Us | E = Use of<br>mary ener<br>e of renev | non-rene<br>gy resourc<br>vable secc | wable pri<br>es used a<br>ondary fue | mary ener<br>s raw mat<br>els; NRSF = | gy excludi<br>erials; PEN<br>Use of no | ing non-<br>NRT =<br>on- |

Table 21: End-of-life (waste categories and output flows) - Group 3.

|           |         |                                                                                                   |              | WAS          | STE CAT      | EGORIE       | S AND        | OUTPU        | T FLOW       | S PER F      | IXTURE       |              |              |              |              |               |
|-----------|---------|---------------------------------------------------------------------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------|
| Parameter | Unit    | A1-A3                                                                                             | A4           | A5           | B1           | B2           | В3           | B4           | B5           | В6           | В7           | C1           | C2           | С3           | C4           | D             |
| HWD       | kg      | 1,38E-<br>02                                                                                      | 1,86E-<br>04 | 9,88E-<br>06 | 0,00E+<br>00 | 1,15E-<br>03 | 1,01E-<br>04 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 3,33E-<br>03 | 1,41E-<br>06 | 2,52E-<br>05 | 3,37E-<br>06 | 2,72E-<br>07 | -1,75E<br>-05 |
| NHWD      | kg      | 2,05E+<br>01                                                                                      | 9,33E-<br>01 | 1,86E-<br>01 | 0,00E+<br>00 | 3,64E+<br>00 | 1,51E-<br>01 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 1,33E+<br>01 | 3,24E-<br>03 | 1,64E-<br>01 | 3,49E-<br>02 | 2,62E-<br>01 | -5,39E<br>-02 |
| RWD       | kg      | 1,17E-<br>03                                                                                      | 1,44E-<br>05 | 1,01E-<br>06 | 0,00E+<br>00 | 3,15E-<br>04 | 6,87E-<br>06 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 6,22E-<br>03 | 5,81E-<br>06 | 1,57E-<br>06 | 3,65E-<br>07 | 1,57E-<br>08 | -5,63E<br>-06 |
| CRU       | kg      | 3 16F+ 0 00F+ 8 16F- 0 00F+ 0 00F+ 1 77F- 0 00F+ 0 00F+ 0 00F+ 0 00F+ 0 00F+ 3 95F+ 0 00F+ 0 00F+ |              |              |              |              |              |              |              |              |              |              |              |              |              |               |
| MFR       | kg      | 3,16E+<br>00                                                                                      | 0,00E+<br>00 | 8,16E-<br>01 | 0,00E+<br>00 | 0,00E+<br>00 | 1,77E-<br>02 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 3,95E+<br>00 | 0,00E+<br>00 | 0,00E<br>+00  |
| MER       | kg      | 0,00E+<br>00                                                                                      | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E<br>+00  |
| EEE       | MJ      | 2,99E-<br>03                                                                                      | 0,00E+<br>00 | 1,60E-<br>01 | 0,00E+<br>00 | 0,00E+<br>00 | 1,45E-<br>02 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 1,08E-<br>01 | 0,00E+<br>00 | 0,00E<br>+00  |
| EET       | MJ      | 2,87E-<br>02                                                                                      | 0,00E+<br>00 | 1,54E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 1,39E-<br>01 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 1,03E+<br>00 | 0,00E+<br>00 | 0,00E<br>+00  |
| Caption   | Materia | Hazardous                                                                                         | cling; MEF   | R = Materi   | als for ene  | ergy recov   | ery; EEE =   | Exported     | l electrica  | l energy; E  | ET = Expo    | rted ther    | mal energ    | y<br>y       |              |               |
|           |         | nbers are o<br>-11 or 0,0                                                                         |              |              | cnotation    | , TX 1,95E-  | FUZ. This i  | number ca    | in also be   | written as   | s: 1,95*10   | 2 or 195,    | wniie 1,12   | E-TT IS TH   | ie same as   | 5             |

Table 22: Biogenic carbon content - Group 3.

| BIOGENIC CARBO                                    | N CONTENT PER FIXTURE |                                                  |
|---------------------------------------------------|-----------------------|--------------------------------------------------|
| Parameter                                         | Unit                  | At the factory gate                              |
| Biogenic carbon content in a product              | kg C                  | 0                                                |
| Biogenic carbon content in accompanying packaging | kg C                  | 0,54                                             |
| Note                                              | 1 kg biogenic carl    | oon is equivalent to 44/12 kg of CO <sub>2</sub> |





#### Group 4: Colors is represented by 321-27 - Matt black

Table 23: Environmental impact indicators - Group 4.

|             |                                                                         |                                                      |                                                 |                                                        | ENV                                     | IRONM                            | ENTAL I                               | MPACT                                  | S PER F                              | IXTURE                                   |                                           |                                        |                                     |                          |                         |               |
|-------------|-------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------|-----------------------------------------|----------------------------------|---------------------------------------|----------------------------------------|--------------------------------------|------------------------------------------|-------------------------------------------|----------------------------------------|-------------------------------------|--------------------------|-------------------------|---------------|
| Parameter   | Unit                                                                    | A1-A3                                                | A4                                              | A5                                                     | B1                                      | B2                               | В3                                    | B4                                     | B5                                   | В6                                       | В7                                        | C1                                     | C2                                  | C3                       | C4                      | D             |
| GWP- total  | kg CO <sub>2</sub> -                                                    | 5,26E+                                               | 3,42E+                                          | 6,62E-                                                 | 0,00E+                                  | 8,93E+                           | 6,46E-                                | 0,00E+                                 | 0,00E+                               | 0,00E+                                   | 6,54E+                                    | 3,67E-                                 | 3,18E-                              | 2,36E-                   | 1,98E-                  | -3,41E        |
|             | eq.                                                                     | 01                                                   | 00                                              | 01                                                     | 00                                      | 00                               | 01                                    | 00                                     | 00                                   | 00                                       | 01                                        | 02                                     | 01                                  | 01                       | 02                      | -01           |
| GWP-fossil  | kg CO <sub>2</sub> -                                                    | 5,25E+                                               | 3,42E+                                          | 1,46E-                                                 | 0,00E+                                  | 1,59E+                           | 6,18E-                                | 0,00E+                                 | 0,00E+                               | 0,00E+                                   | 6,39E+                                    | 3,54E-                                 | 3,18E-                              | 2,31E-                   | 8,24E-                  | -3,21E        |
|             | eq.                                                                     | 01                                                   | 00                                              | 01                                                     | 00                                      | 01                               | 01                                    | 00                                     | 00                                   | 00                                       | 01                                        | 02                                     | 01                                  | 01                       | 03                      | -01           |
| GWP-        | kg CO <sub>2</sub> -                                                    | -3,90E-                                              | 0,00E+                                          | 4,95E-                                                 | 0,00E+                                  | 5,25E-                           | 0,00E+                                | 0,00E+                                 | 0,00E+                               | 0,00E+                                   | 1,34E+                                    | 1,23E-                                 | 0,00E+                              | 0,00E+                   | 0,00E+                  | -1,25E        |
| biogenic    | eq.                                                                     | 01                                                   | 00                                              | 01                                                     | 00                                      | 03                               | 00                                    | 00                                     | 00                                   | 00                                       | 00                                        | 03                                     | 00                                  | 00                       | 00                      | -03           |
| GWP- luluc  | kg CO₂-                                                                 | 1,30E-                                               | 2,00E-                                          | 5,71E-                                                 | 0,00E+                                  | 1,11E+                           | 4,90E-                                | 0,00E+                                 | 0,00E+                               | 0,00E+                                   | 1,12E-                                    | 8,83E-                                 | 1,45E-                              | 3,21E-                   | 1,95E-                  | -1,51E        |
|             | eq.                                                                     | 01                                                   | 03                                              | 05                                                     | 00                                      | 01                               | 04                                    | 00                                     | 00                                   | 00                                       | 01                                        | 05                                     | 04                                  | 05                       | 06                      | -04           |
| ODP         | kg CFC                                                                  | 7,77E-                                               | 7,43E-                                          | 2,52E-                                                 | 0,00E+                                  | 1,03E-                           | 4,95E-                                | 0,00E+                                 | 0,00E+                               | 0,00E+                                   | 1,81E-                                    | 6,75E-                                 | 6,92E-                              | 1,09E-                   | 6,81E-                  | -1,07E        |
|             | 11 -eq.                                                                 | 07                                                   | 08                                              | 09                                                     | 00                                      | 06                               | 09                                    | 00                                     | 00                                   | 00                                       | 06                                        | 10                                     | 09                                  | 09                       | 11                      | -08           |
| AP          | mol H <sup>+-</sup>                                                     | 3,17E+                                               | 1,05E-                                          | 5,61E-                                                 | 0,00E+                                  | 1,42E-                           | 1,40E-                                | 0,00E+                                 | 0,00E+                               | 0,00E+                                   | 3,50E-                                    | 2,03E-                                 | 9,89E-                              | 2,53E-                   | 2,02E-                  | -7,99E        |
|             | eq.                                                                     | 00                                                   | 02                                              | 04                                                     | 00                                      | 01                               | 02                                    | 00                                     | 00                                   | 00                                       | 01                                        | 04                                     | 04                                  | 04                       | 05                      | -04           |
| EP-         | kg P-eq.                                                                | 2,51E-                                               | 2,89E-                                          | 1,32E-                                                 | 0,00E+                                  | 5,92E-                           | 1,02E-                                | 0,00E+                                 | 0,00E+                               | 0,00E+                                   | 4,24E-                                    | 3,35E-                                 | 2,19E-                              | 5,96E-                   | 5,03E-                  | -4,74E        |
| freshwater  |                                                                         | 01                                                   | 04                                              | 05                                                     | 00                                      | 03                               | 03                                    | 00                                     | 00                                   | 00                                       | 02                                        | 05                                     | 05                                  | 06                       | 07                      | -05           |
| EP- marine  | kg N-eq.                                                                | 1,74E-<br>01                                         | 3,37E-<br>03                                    | 4,47E-<br>04                                           | 0,00E+<br>00                            | 1,13E-<br>01                     | 1,29E-<br>03                          | 0,00E+<br>00                           | 0,00E+<br>00                         | 0,00E+<br>00                             | 6,82E-<br>02                              | 3,28E-<br>05                           | 3,39E-<br>04                        | 1,03E-<br>04             | 3,41E-<br>05            | -2,72E<br>-04 |
| EP-         | mol N-                                                                  | 2,34E+                                               | 3,55E-                                          | 2,14E-                                                 | 0,00E+                                  | 4,62E-                           | 1,24E-                                | 0,00E+                                 | 0,00E+                               | 0,00E+                                   | 6,54E-                                    | 2,97E-                                 | 3,58E-                              | 1,04E-                   | 7,86E-                  | -2,70E        |
| terrestrial | eq.                                                                     | 00                                                   | 02                                              | 03                                                     | 00                                      | 01                               | 02                                    | 00                                     | 00                                   | 00                                       | 01                                        | 04                                     | 03                                  | 03                       | 05                      | -03           |
| POCP        | kg<br>NMVOC-<br>eq.                                                     | 6,62E-<br>01                                         | 1,51E-<br>02                                    | 8,69E-<br>04                                           | 0,00E+<br>00                            | 9,33E-<br>02                     | 3,71E-<br>03                          | 0,00E+<br>00                           | 0,00E+<br>00                         | 0,00E+<br>00                             | 2,39E-<br>01                              | 9,54E-<br>05                           | 1,48E-<br>03                        | 3,45E-<br>04             | 3,15E-<br>05            | -1,10E<br>-03 |
| ADPE        | kg Sb-                                                                  | 4,35E-                                               | 1,49E-                                          | 4,72E-                                                 | 0,00E+                                  | 1,76E-                           | 1,71E-                                | 0,00E+                                 | 0,00E+                               | 0,00E+                                   | 3,36E-                                    | 4,29E-                                 | 1,01E-                              | 1,67E-                   | 5,15E-                  | -8,50E        |
|             | eq.                                                                     | 02                                                   | 05                                              | 07                                                     | 00                                      | 04                               | 04                                    | 00                                     | 00                                   | 00                                       | 04                                        | 07                                     | 06                                  | 07                       | 09                      | -07           |
| ADPF        | MJ                                                                      | 6,81E+<br>02                                         | 4,80E+<br>01                                    | 1,67E+<br>00                                           | 0,00E+<br>00                            | 2,69E+<br>02                     | 8,34E+<br>00                          | 0,00E+<br>00                           | 0,00E+<br>00                         | 0,00E+<br>00                             | 1,15E+<br>03                              | 8,05E-<br>01                           | 4,47E+<br>00                        | 6,82E-<br>01             | 6,09E-<br>02            | -4,73<br>E+00 |
| WDP         | m³                                                                      | 5,24E+<br>01                                         | 1,99E-<br>01                                    | 1,52E-<br>02                                           | 0,00E+<br>00                            | 6,47E+<br>01                     | 5,42E-<br>01                          | 0,00E+<br>00                           | 0,00E+<br>00                         | 0,00E+<br>00                             | 8,77E+<br>03                              | 9,07E-<br>03                           | 1,69E-<br>02                        | 9,99E-<br>03             | 2,59E-<br>03            | -2,28E<br>-02 |
| Caption     | GWP-tota<br>GWP-lulu<br>aquatic fr<br>ADPm = A<br>The numb<br>1,12*10-1 | c = Global<br>eshwater;<br>Abiotic Dep<br>ers are de | Warming<br>EP-marin<br>pletion Po<br>eclared in | Potential<br>e = Eutrop<br>tential – r<br>scientific i | - land use<br>phication -<br>ninerals a | and land<br>aquatic<br>nd metals | use chan<br>marine; El<br>s; ADPf = l | ge; ODP =<br>P-terrestri<br>Abiotic De | Ozone De<br>al = Eutro<br>pletion Po | epletion; A<br>phication<br>otential – I | AP = Acidif<br>– terrestr<br>fossil fuels | ication; El<br>ial; POCP<br>:; WDP = v | P-freshwa<br>= Photoch<br>vater use | ter = Eutro<br>emical zo | ophicatior<br>ne format | n –           |
| Disclaimer  | 1 The resu                                                              | ults of this                                         |                                                 |                                                        | cator shal                              | l be used                        | with care                             | as the un                              | certaintie                           | s on these                               | results ar                                | e high or                              | as there i                          | s limited e              | experience              | d with        |

Table 24: Additional environmental impacts - Group 4

|             |                                                                           |                                                                                                                                                                     |                            | ADI          | DITION       | AL ENVI      | RONME        | NTAL II                  | MPACT:                  | S PER FI               | XTURE                    |              |              |              |              |               |
|-------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------|--------------|--------------|--------------|--------------------------|-------------------------|------------------------|--------------------------|--------------|--------------|--------------|--------------|---------------|
| Parameter   | Unit                                                                      | A1-A3                                                                                                                                                               | A4                         | A5           | B1           | B2           | В3           | B4                       | B5                      | В6                     | В7                       | C1           | C2           | C3           | C4           | D             |
| PM          | Disease<br>Incidence                                                      | 7,83E-<br>06                                                                                                                                                        | 1,99E-<br>07               | 1,10E-<br>08 | 0,00E+<br>00 | 2,02E-<br>06 | 1,11E-<br>07 | 0,00E+<br>00             | 0,00E+<br>00            | 0,00E+<br>00           | 3,63E-<br>06             | 7,44E-<br>10 | 2,17E-<br>08 | 4,41E-<br>09 | 4,17E-<br>10 | -1,08<br>E-08 |
| IRP         | kBq U235<br>eq                                                            | 2,52E+<br>01                                                                                                                                                        | 9,58E-<br>02               | 4,20E-<br>03 | 0,00E+<br>00 | 1,26E+<br>00 | 2,73E-<br>02 | 0,00E+<br>00             | 0,00E+<br>00            | 0,00E+<br>00           | 2,43E+<br>01             | 2,27E-<br>02 | 7,22E-<br>03 | 1,64E-<br>03 | 7,50E-<br>05 | -2,67<br>E-02 |
| ETP-fw      | CTUe                                                                      | 03 01 00 00 02 01 00 00 02 01 00 00 02 01 00 01 02 E-01  CTIIh 5,11E- 1,75E- 8,84E- 0,00E+ 2,96E- 2,06E- 0,00E+ 0,00E+ 0,00E+ 2,82E- 1,66E- 1,33E- 4,30E- 2,06E1,12 |                            |              |              |              |              |                          |                         |                        |                          |              |              |              |              |               |
| HTP-c       | CTUh                                                                      | CTUh 5,11E- 1,75E- 8,84E- 0,00E+ 2,96E- 2,06E- 0,00E+ 0,00E+ 0,00E+ 2,82E- 1,66E- 1,33E- 4,30E- 2,06E1,12   07                                                      |                            |              |              |              |              |                          |                         |                        |                          |              |              |              |              |               |
| HTP-nc      | CTUh                                                                      | 07 09 11 00 08 09 00 00 00 07 11 10 11 12 E-10                                                                                                                      |                            |              |              |              |              |                          |                         |                        |                          |              |              |              |              |               |
| SQP         | -                                                                         | 1,10E+<br>03                                                                                                                                                        | 2,00E+<br>01               | 8,05E-<br>01 | 0,00E+<br>00 | 8,50E+<br>02 | 4,74E+<br>00 | 0,00E+<br>00             | 0,00E+<br>00            | 0,00E+<br>00           | 2,50E+<br>02             | 1,57E-<br>01 | 2,29E+<br>00 | 4,93E-<br>01 | 1,28E-<br>01 | -8,63<br>E-01 |
| Caption     | PM = Partico<br>HTP-nc = F<br>The number<br>or 0,00000                    | luman tox<br>s are decl                                                                                                                                             | cicity – no<br>lared in sc | n cancer e   | effects; SC  | P = Soil Q   | uality (dir  | nensionle                | ss)                     |                        |                          |              |              |              |              | ·             |
| Disclaimers | 1 The result<br>indicator.<br>2 This impace<br>effects due<br>radiation f | ct categor<br>e to possib                                                                                                                                           | y deals ma                 | ainly with   | the event    | tual impac   | ct of low o  | lose ionizi<br>due to ra | ng radiati<br>dioactive | on on hur<br>waste dis | nan healtl<br>posal in u | h of the n   | uclear fue   | l cycle. It  | does not d   | consider      |





Table 25: Parameters describing resource use - Group 4

|           |                                             |                                                                                     |                                                  |                                                    |                                                     | RES                                               | OURCE                                 | USE PEI                             | R FIXTU                             | RE                                    |                                       |                                      |                                      |                                       |                                        |                          |
|-----------|---------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------|-----------------------------------------------------|---------------------------------------------------|---------------------------------------|-------------------------------------|-------------------------------------|---------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|----------------------------------------|--------------------------|
| Parameter | Unit                                        | A1-A3                                                                               | A4                                               | A5                                                 | B1                                                  | B2                                                | В3                                    | B4                                  | B5                                  | В6                                    | В7                                    | C1                                   | C2                                   | C3                                    | C4                                     | D                        |
| PERE      | MJ                                          | 3,08E+<br>02                                                                        | 1,05E+<br>00                                     | -1,80E<br>+01                                      | 0,00E+<br>00                                        | 4,59E+<br>02                                      | 6,85E-<br>01                          | 0,00E+<br>00                        | 0,00E+<br>00                        | 0,00E+<br>00                          | 1,69E+<br>02                          | 1,80E-<br>01                         | 7,80E-<br>02                         | 1,97E-<br>02                          | 9,73E-<br>04                           | -2,25E-<br>01            |
| PERM      | MJ                                          | 2,02E-<br>01                                                                        | 0,00E+<br>00                                     | 1,81E+<br>01                                       | 0,00E+<br>00                                        | 0,00E+<br>00                                      | 0,00E+<br>00                          | 0,00E+<br>00                        | 0,00E+<br>00                        | 0,00E+<br>00                          | 0,00E+<br>00                          | 0,00E+<br>00                         | 0,00E+<br>00                         | 0,00E+<br>00                          | 0,00E+<br>00                           | 0,00E+<br>00             |
| PERT      | MJ                                          | 3,08E+<br>02                                                                        | 1,05E+<br>00                                     | 4,38E-<br>02                                       | 0,00E+<br>00                                        | 4,59E+<br>02                                      | 6,85E-<br>01                          | 0,00E+<br>00                        | 0,00E+<br>00                        | 0,00E+<br>00                          | 1,69E+<br>02                          | 1,80E-<br>01                         | 7,80E-<br>02                         | 1,97E-<br>02                          | 9,73E-<br>04                           | -2,25E-<br>01            |
| PENRE     | MJ                                          | 7,20E+<br>02                                                                        | 5,10E+<br>01                                     | 1,25E+<br>00                                       | 0,00E+<br>00                                        | 3,04E+<br>02                                      | 8,95E+<br>00                          | 0,00E+<br>00                        | 0,00E+<br>00                        | 0,00E+<br>00                          | 1,21E+<br>03                          | 8,44E-<br>01                         | 4,75E+<br>00                         | 7,26E-<br>01                          | 6,48E-<br>02                           | -5,14E<br>+00            |
| PENRM     | MJ                                          | 00 00 01 00 00 00 00 00 00 00 00 00 00 0                                            |                                                  |                                                    |                                                     |                                                   |                                       |                                     |                                     |                                       |                                       |                                      |                                      |                                       |                                        |                          |
| PENRT     | MJ                                          | 00 00 01 00 00 00 00 00 00 00 00 00 00 0                                            |                                                  |                                                    |                                                     |                                                   |                                       |                                     |                                     |                                       |                                       |                                      |                                      |                                       |                                        |                          |
| SM        | kg                                          | 0,00E+<br>00                                                                        | 0,00E+<br>00                                     | 0,00E+<br>00                                       | 0,00E+<br>00                                        | 0,00E+<br>00                                      | 0,00E+<br>00                          | 0,00E+<br>00                        | 0,00E+<br>00                        | 0,00E+<br>00                          | 0,00E+<br>00                          | 0,00E+<br>00                         | 0,00E+<br>00                         | 0,00E+<br>00                          | 0,00E+<br>00                           | 0,00E+<br>00             |
| RSF       | MJ                                          | 0,00E+<br>00                                                                        | 0,00E+<br>00                                     | 0,00E+<br>00                                       | 0,00E+<br>00                                        | 0,00E+<br>00                                      | 0,00E+<br>00                          | 0,00E+<br>00                        | 0,00E+<br>00                        | 0,00E+<br>00                          | 0,00E+<br>00                          | 0,00E+<br>00                         | 0,00E+<br>00                         | 0,00E+<br>00                          | 0,00E+<br>00                           | 0,00E+<br>00             |
| NRSF      | MJ                                          | 0,00E+<br>00                                                                        | 0,00E+<br>00                                     | 0,00E+<br>00                                       | 0,00E+<br>00                                        | 0,00E+<br>00                                      | 0,00E+<br>00                          | 0,00E+<br>00                        | 0,00E+<br>00                        | 0,00E+<br>00                          | 0,00E+<br>00                          | 0,00E+<br>00                         | 0,00E+<br>00                         | 0,00E+<br>00                          | 0,00E+<br>00                           | 0,00E+<br>00             |
| FW        | m³                                          | 5,38E+<br>01                                                                        | 1,97E-<br>01                                     | 1,52E-<br>02                                       | 0,00E+<br>00                                        | 6,27E+<br>01                                      | 5,32E-<br>01                          | 0,00E+<br>00                        | 0,00E+<br>00                        | 0,00E+<br>00                          | 8,36E+<br>03                          | 5,81E-<br>06                         | 1,77E-<br>06                         | 4,06E-<br>07                          | 1,80E-<br>08                           | -6,82E-<br>06            |
| Caption   | resource<br>renewak<br>Total use<br>renewak | Use of rene<br>es used as<br>ole primar<br>e of non-re<br>ole second<br>nbers are o | raw mate<br>y energy r<br>enewable<br>ary fuels; | rials; PERT<br>esources (<br>primary e<br>FW = Net | = Total u<br>used as ra<br>nergy reso<br>use of fre | se of rene<br>w materia<br>ources; SN<br>sh water | wable pri<br>lls; PENRM<br>1 = Use of | mary ener<br>1 = Use of<br>secondar | gy resour<br>non-rene<br>y material | ces; PENR<br>wable prir<br>; RSF = Us | E = Use of<br>mary ener<br>e of renev | non-rene<br>gy resourc<br>vable secc | wable pri<br>es used a<br>ondary fue | mary ener<br>s raw mat<br>els; NRSF = | gy excludi<br>erials; PEN<br>Use of no | ing non-<br>NRT =<br>on- |
|           | THE HUII                                    | incis ale                                                                           | acciared II                                      | i sciellull                                        | notation,                                           | , 1, 1,555                                        | UZ. 11115 11                          | uniber Car                          | i aiso be t                         | wiittellas                            | . 1,93 102                            | . OI 193, V                          | viiiie 1,121                         | r-11 is tile                          | same as 1                              | 1,12 10-                 |

11 or 0,000000000112.

Table 26: End-of-life (waste categories and output flows) - Group 4

|           |         |                                               |              | WAS          | STE CAT      | EGORIE       | S AND        | OUTPU        | T FLOW       | S PER F      | IXTURE       |              |              |              |              |               |
|-----------|---------|-----------------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------|
| Parameter | Unit    | A1-A3                                         | A4           | A5           | B1           | B2           | В3           | B4           | B5           | В6           | В7           | C1           | C2           | С3           | C4           | D             |
| HWD       | kg      | 2,32E-<br>02                                  | 3,05E-<br>04 | 1,03E-<br>05 | 0,00E+<br>00 | 1,15E-<br>03 | 1,03E-<br>04 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 3,33E-<br>03 | 1,41E-<br>06 | 2,84E-<br>05 | 3,86E-<br>06 | 3,18E-<br>07 | -2,06E<br>-05 |
| NHWD      | kg      | 2,05E+<br>01                                  | 1,53E+<br>00 | 1,94E-<br>01 | 0,00E+<br>00 | 3,64E+<br>00 | 1,60E-<br>01 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 1,33E+<br>01 | 3,24E-<br>03 | 1,84E-<br>01 | 4,04E-<br>02 | 3,08E-<br>01 | -5,97E<br>-02 |
| RWD       | kg      | 03 05 06 00 04 06 00 00 00 03 06 06 07 08 -06 |              |              |              |              |              |              |              |              |              |              |              |              |              |               |
| CRU       | kg      | kg                                            |              |              |              |              |              |              |              |              |              |              |              |              |              |               |
| MFR       | kg      | 69 00 00 00 00 00 00 00 00 00 00 00 00 00     |              |              |              |              |              |              |              |              |              |              |              |              |              |               |
| MER       | kg      | 0,00E+<br>00                                  | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E<br>+00  |
| EEE       | MJ      | 2,99E-<br>03                                  | 0,00E+<br>00 | 1,68E-<br>01 | 0,00E+<br>00 | 0,00E+<br>00 | 1,45E-<br>02 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 1,68E-<br>01 | 0,00E+<br>00 | 0,00E<br>+00  |
| EET       | MJ      | 2,87E-<br>02                                  | 0,00E+<br>00 | 1,61E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 1,39E-<br>01 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 1,61E+<br>00 | 0,00E+<br>00 | 0,00E<br>+00  |
| Caption   | Materia | Hazardous<br>Is for recyc                     | cling; MEF   | R = Materi   | als for ene  | ergy recov   | ery; EEE =   | Exported     | l electrica  | l energy; E  | ET = Expo    | rted ther    | mal energ    | У            |              |               |
|           |         | nbers are o<br>-11 or 0,00                    |              |              | notation     | , fx 1,95E-  | +02. This r  | number ca    | ın also be   | written as   | s: 1,95*10   | 2 or 195,    | while 1,12   | 2E-11 is th  | ie same as   | 5             |

Table 27: Biogenic carbon content - Group 4

| BIOGENIC CARBOI                                   | N CONTENT PER FIXTURE |                                                  |
|---------------------------------------------------|-----------------------|--------------------------------------------------|
| Parameter                                         | Unit                  | At the factory gate                              |
| Biogenic carbon content in a product              | kg C                  | 0                                                |
| Biogenic carbon content in accompanying packaging | kg C                  | 0,56                                             |
| Note                                              | 1 kg biogenic carl    | oon is equivalent to 44/12 kg of CO <sub>2</sub> |





#### Group 5: Exclusive color (PVD on Brass) is represented by 321L-60 - Black

Table 28: Environmental impact indicators - Group 5.

|             |                                    |              |              |              | ENV          | IRONM        | ENTAL I      | MPACT        | S PER F      | IXTURE       |              |              |              |              |              |               |
|-------------|------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------|
| Parameter   | Unit                               | A1-A3        | A4           | A5           | B1           | B2           | В3           | B4           | B5           | В6           | В7           | C1           | C2           | C3           | C4           | D             |
| GWP- total  | kg CO <sub>2</sub> -               | 5,31E+       | 2,40E+       | 6,62E-       | 0,00E+       | 8,93E+       | 6,25E-       | 0,00E+       | 0,00E+       | 0,00E+       | 6,54E+       | 3,67E-       | 3,24E-       | 2,37E-       | 2,00E-       | -3,41E        |
|             | eq.                                | 01           | 00           | 01           | 00           | 00           | 01           | 00           | 00           | 00           | 01           | 02           | 01           | 01           | 02           | -01           |
| GWP-fossil  | kg CO₂-                            | 5,30E+       | 2,40E+       | 1,46E-       | 0,00E+       | 1,59E+       | 5,97E-       | 0,00E+       | 0,00E+       | 0,00E+       | 6,39E+       | 3,54E-       | 3,23E-       | 2,32E-       | 8,45E-       | -3,22E        |
|             | eq.                                | 01           | 00           | 01           | 00           | 01           | 01           | 00           | 00           | 00           | 01           | 02           | 01           | 01           | 03           | -01           |
| GWP-        | kg CO <sub>2</sub> -               | -3,90E-      | 0,00E+       | 4,95E-       | 0,00E+       | 5,25E-       | 0,00E+       | 0,00E+       | 0,00E+       | 0,00E+       | 1,34E+       | 1,23E-       | 0,00E+       | 0,00E+       | 0,00E+       | -1,25E        |
| biogenic    | eq.                                | 01           | 00           | 01           | 00           | 03           | 00           | 00           | 00           | 00           | 00           | 03           | 00           | 00           | 00           | -03           |
| GWP- luluc  | kg CO <sub>2</sub> -               | 1,32E-       | 1,40E-       | 5,71E-       | 0,00E+       | 1,11E+       | 4,77E-       | 0,00E+       | 0,00E+       | 0,00E+       | 1,12E-       | 8,83E-       | 1,48E-       | 3,24E-       | 1,99E-       | -1,51E        |
|             | eq.                                | 01           | 03           | 05           | 00           | 01           | 04           | 00           | 00           | 00           | 01           | 05           | 04           | 05           | 06           | -04           |
| ODP         | kg CFC                             | 7,83E-       | 5,21E-       | 2,53E-       | 0,00E+       | 1,03E-       | 4,49E-       | 0,00E+       | 0,00E+       | 0,00E+       | 1,81E-       | 6,75E-       | 7,04E-       | 1,10E-       | 6,97E-       | -1,07E        |
|             | 11 -eq.                            | 07           | 08           | 09           | 00           | 06           | 09           | 00           | 00           | 00           | 06           | 10           | 09           | 09           | 11           | -08           |
| AP          | mol H <sup>+-</sup>                | 3,23E+       | 7,34E-       | 5,61E-       | 0,00E+       | 1,42E-       | 1,39E-       | 0,00E+       | 0,00E+       | 0,00E+       | 3,50E-       | 2,03E-       | 1,01E-       | 2,55E-       | 2,06E-       | -8,02E        |
|             | eq.                                | 00           | 03           | 04           | 00           | 01           | 02           | 00           | 00           | 00           | 01           | 04           | 03           | 04           | 05           | -04           |
| EP-         | kg P-eq.                           | 2,55E-       | 2,03E-       | 1,32E-       | 0,00E+       | 5,92E-       | 1,02E-       | 0,00E+       | 0,00E+       | 0,00E+       | 4,24E-       | 3,35E-       | 2,23E-       | 6,02E-       | 5,09E-       | -4,75E        |
| freshwater  |                                    | 01           | 04           | 05           | 00           | 03           | 03           | 00           | 00           | 00           | 02           | 05           | 05           | 06           | 07           | -05           |
| EP- marine  | kg N-eq.                           | 1,77E-<br>01 | 2,36E-<br>03 | 4,47E-<br>04 | 0,00E+<br>00 | 1,13E-<br>01 | 1,27E-<br>03 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 6,82E-<br>02 | 3,28E-<br>05 | 3,45E-<br>04 | 1,04E-<br>04 | 3,43E-<br>05 | -2,73E<br>-04 |
| EP-         | mol N-                             | 2,38E+       | 2,49E-       | 2,14E-       | 0,00E+       | 4,62E-       | 1,22E-       | 0,00E+       | 0,00E+       | 0,00E+       | 6,54E-       | 2,97E-       | 3,64E-       | 1,06E-       | 8,04E-       | -2,71E        |
| terrestrial | eq.                                | 00           | 02           | 03           | 00           | 01           | 02           | 00           | 00           | 00           | 01           | 04           | 03           | 03           | 05           | -03           |
| POCP        | kg<br>NMVOC-<br>eq.                | 6,74E-<br>01 | 1,06E-<br>02 | 8,70E-<br>04 | 0,00E+<br>00 | 9,33E-<br>02 | 3,62E-<br>03 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 2,39E-<br>01 | 9,54E-<br>05 | 1,51E-<br>03 | 3,48E-<br>04 | 3,21E-<br>05 | -1,11E<br>-03 |
| ADPE        | kg Sb-                             | 4,44E-       | 1,05E-       | 4,72E-       | 0,00E+       | 1,76E-       | 1,71E-       | 0,00E+       | 0,00E+       | 0,00E+       | 3,36E-       | 4,29E-       | 1,03E-       | 1,69E-       | 5,24E-       | -8,52E        |
|             | eq.                                | 02           | 05           | 07           | 00           | 04           | 04           | 00           | 00           | 00           | 04           | 07           | 06           | 07           | 09           | -07           |
| ADPF        | MJ                                 | 6,87E+<br>02 | 3,37E+<br>01 | 1,67E+<br>00 | 0,00E+<br>00 | 2,69E+<br>02 | 8,05E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 1,15E+<br>03 | 8,05E-<br>01 | 4,55E+<br>00 | 6,90E-<br>01 | 6,23E-<br>02 | -4,74<br>E+00 |
| WDP         | m³                                 | 5,33E+<br>01 | 1,39E-<br>01 | 1,52E-<br>02 | 0,00E+<br>00 | 6,47E+<br>01 | 5,41E-<br>01 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 8,77E+<br>03 | 9,07E-<br>03 | 1,72E-<br>02 | 1,00E-<br>02 | 2,65E-<br>03 | -2,29E<br>-02 |
| Caption     | GWP-lulu<br>aquatic fr<br>ADPm = A |              |              |              |              |              |              |              |              |              |              |              |              |              |              |               |
| Disclaimer  | ,                                  | ults of this |              |              | icator shal  | l be used    | with care    | as the un    | certaintie   | s on these   | results ar   | e high or    | as there i   | s limited e  | experience   | d with        |

Table 29: Additional environmental impacts - Group 5.

|             |                                                                           |                                                                                                                                                      |                           | ADI          | DITIONA      | AL ENVI      | RONME        | NTAL II      | MPACT:       | S PER FI               | XTURE                   |              |              |                                       |              |               |
|-------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------|--------------|--------------|--------------|--------------|--------------|------------------------|-------------------------|--------------|--------------|---------------------------------------|--------------|---------------|
| Parameter   | Unit                                                                      | A1-A3                                                                                                                                                | A4                        | A5           | B1           | B2           | В3           | B4           | B5           | В6                     | В7                      | C1           | C2           | СЗ                                    | C4           | D             |
| PM          | Disease<br>Incidence                                                      | 7,95E-<br>06                                                                                                                                         | 1,40E-<br>07              | 1,10E-<br>08 | 0,00E+<br>00 | 2,02E-<br>06 | 1,10E-<br>07 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00           | 3,63E-<br>06            | 7,44E-<br>10 | 2,21E-<br>08 | 4,46E-<br>09                          | 4,26E-<br>10 | -1,09<br>E-08 |
| IRP         | kBq U235<br>eq                                                            | 2,52E+<br>01                                                                                                                                         | 6,72E-<br>02              | 4,20E-<br>03 | 0,00E+<br>00 | 1,26E+<br>00 | 2,67E-<br>02 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00           | 2,43E+<br>01            | 2,27E-<br>02 | 7,35E-<br>03 | 1,65E-<br>03                          | 7,62E-<br>05 | -2,68<br>E-02 |
| ETP-fw      | CTUe                                                                      | TUE 4,69E+ 1,78E+ 1,69E+ 0,00E+ 5,34E+ 1,88E+ 0,00E+ 0,00E+ 0,00E+ 2,93E+ 1,35E- 2,30E+ 6,44E- 7,10E8,67 03 01 00 00 02 01 00 00 02 01 00 01 02 E-01 |                           |              |              |              |              |              |              |                        |                         |              |              |                                       |              |               |
| HTP-c       | CTUh                                                                      | TUh 03 01 00 00 02 01 00 00 00 00 00 00 00 00 00 00 01 02 E-01  TUH 5,22E- 09 11 00 08 09 09 00 00 00 00 00 00 01 12 E-01                            |                           |              |              |              |              |              |              |                        |                         |              |              |                                       |              |               |
| HTP-nc      | CTUh                                                                      | 4,30E-<br>05                                                                                                                                         | 2,35E-<br>08              | 2,07E-<br>09 | 0,00E+<br>00 | 6,85E-<br>07 | 1,67E-<br>07 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00           | 3,69E-<br>06            | 6,63E-<br>10 | 3,02E-<br>09 | 9,12E-<br>10                          | 4,59E-<br>11 | -1,80<br>E-09 |
| SQP         | -                                                                         | 1,12E+<br>03                                                                                                                                         | 1,40E+<br>01              | 8,05E-<br>01 | 0,00E+<br>00 | 8,50E+<br>02 | 4,62E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00           | 2,50E+<br>02            | 1,57E-<br>01 | 2,33E+<br>00 | 4,98E-<br>01                          | 1,31E-<br>01 | -8,68<br>E-01 |
| Caption     | PM = Partic<br>HTP-nc = F<br>The number<br>or 0,00000                     | luman tox<br>rs are dec                                                                                                                              | cicity – no<br>ared in so | n cancer e   | effects; SC  | P = Soil C   | uality (dir  | mensionle    | ss)          |                        |                         |              |              | , , , , , , , , , , , , , , , , , , , |              |               |
| Disclaimers | 1 The result<br>indicator.<br>2 This impace<br>effects due<br>radiation f | ct categor<br>e to possil                                                                                                                            | y deals m                 | ainly with   | the event    | tual impac   | ct of low d  | lose ionizi  | ng radiati   | on on hur<br>waste dis | nan healt<br>posal in u | n of the n   | uclear fue   | l cycle. It                           | does not o   | consider      |





Table 30: Parameters describing resource use - Group 5.

|           |                                                        |                                                                                      |                                                                  |                                                     |                                                     | RES                                               | OURCE                                 | USE PEI                             | R FIXTU                             | RE                                    |                                       |                                      |                                      |                                       |                                        |                          |
|-----------|--------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|---------------------------------------------------|---------------------------------------|-------------------------------------|-------------------------------------|---------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|----------------------------------------|--------------------------|
| Parameter | Unit                                                   | A1-A3                                                                                | A4                                                               | A5                                                  | B1                                                  | B2                                                | В3                                    | B4                                  | B5                                  | В6                                    | В7                                    | C1                                   | C2                                   | C3                                    | C4                                     | D                        |
| PERE      | MJ                                                     | 3,11E+<br>02                                                                         | 7,33E-<br>01                                                     | -1,80E<br>+01                                       | 0,00E+<br>00                                        | 4,59E+<br>02                                      | 6,79E-<br>01                          | 0,00E+<br>00                        | 0,00E+<br>00                        | 0,00E+<br>00                          | 1,69E+<br>02                          | 1,80E-<br>01                         | 7,93E-<br>02                         | 1,99E-<br>02                          | 9,89E-<br>04                           | -2,26E-<br>01            |
| PERM      | MJ                                                     | 2,02E-<br>01                                                                         | 0,00E+<br>00                                                     | 1,81E+<br>01                                        | 0,00E+<br>00                                        | 0,00E+<br>00                                      | 0,00E+<br>00                          | 0,00E+<br>00                        | 0,00E+<br>00                        | 0,00E+<br>00                          | 0,00E+<br>00                          | 0,00E+<br>00                         | 0,00E+<br>00                         | 0,00E+<br>00                          | 0,00E+<br>00                           | 0,00E+<br>00             |
| PERT      | MJ                                                     | 3,11E+<br>02                                                                         | 7,33E-<br>01                                                     | 4,38E-<br>02                                        | 0,00E+<br>00                                        | 4,59E+<br>02                                      | 6,79E-<br>01                          | 0,00E+<br>00                        | 0,00E+<br>00                        | 0,00E+<br>00                          | 1,69E+<br>02                          | 1,80E-<br>01                         | 7,93E-<br>02                         | 1,99E-<br>02                          | 9,89E-<br>04                           | -2,26E-<br>01            |
| PENRE     | MJ                                                     | 7,27E+<br>02                                                                         | 3,58E+<br>01                                                     | 1,24E+<br>00                                        | 0,00E+<br>00                                        | 3,04E+<br>02                                      | 8,64E+<br>00                          | 0,00E+<br>00                        | 0,00E+<br>00                        | 0,00E+<br>00                          | 1,21E+<br>03                          | 8,44E-<br>01                         | 4,83E+<br>00                         | 7,34E-<br>01                          | 6,63E-<br>02                           | -5,15E<br>+00            |
| PENRM     | MJ                                                     | 00 00 01 00 00 00 00 00 00 00 00 00 00 0                                             |                                                                  |                                                     |                                                     |                                                   |                                       |                                     |                                     |                                       |                                       |                                      |                                      |                                       |                                        |                          |
| PENRT     | MJ                                                     | 00 00 01 00 00 00 00 00 00 00 00 00 00 0                                             |                                                                  |                                                     |                                                     |                                                   |                                       |                                     |                                     |                                       |                                       |                                      |                                      |                                       |                                        |                          |
| SM        | kg                                                     | 0,00E+<br>00                                                                         | 0,00E+<br>00                                                     | 0,00E+<br>00                                        | 0,00E+<br>00                                        | 0,00E+<br>00                                      | 0,00E+<br>00                          | 0,00E+<br>00                        | 0,00E+<br>00                        | 0,00E+<br>00                          | 0,00E+<br>00                          | 0,00E+<br>00                         | 0,00E+<br>00                         | 0,00E+<br>00                          | 0,00E+<br>00                           | 0,00E+<br>00             |
| RSF       | MJ                                                     | 0,00E+<br>00                                                                         | 0,00E+<br>00                                                     | 0,00E+<br>00                                        | 0,00E+<br>00                                        | 0,00E+<br>00                                      | 0,00E+<br>00                          | 0,00E+<br>00                        | 0,00E+<br>00                        | 0,00E+<br>00                          | 0,00E+<br>00                          | 0,00E+<br>00                         | 0,00E+<br>00                         | 0,00E+<br>00                          | 0,00E+<br>00                           | 0,00E+<br>00             |
| NRSF      | МЈ                                                     | 0,00E+<br>00                                                                         | 0,00E+<br>00                                                     | 0,00E+<br>00                                        | 0,00E+<br>00                                        | 0,00E+<br>00                                      | 0,00E+<br>00                          | 0,00E+<br>00                        | 0,00E+<br>00                        | 0,00E+<br>00                          | 0,00E+<br>00                          | 0,00E+<br>00                         | 0,00E+<br>00                         | 0,00E+<br>00                          | 0,00E+<br>00                           | 0,00E+<br>00             |
| FW        | m³                                                     | 5,47E+<br>01                                                                         | 1,38E-<br>01                                                     | 1,52E-<br>02                                        | 0,00E+<br>00                                        | 6,27E+<br>01                                      | 5,31E-<br>01                          | 0,00E+<br>00                        | 0,00E+<br>00                        | 0,00E+<br>00                          | 8,36E+<br>03                          | 5,81E-<br>06                         | 1,80E-<br>06                         | 4,10E-<br>07                          | 1,83E-<br>08                           | -6,83E-<br>06            |
| Caption   | resource<br>renewal<br>Total use<br>renewal<br>The num | Use of rene<br>es used as<br>ble primare<br>e of non-re<br>ble second<br>nbers are c | raw mate<br>y energy r<br>enewable<br>lary fuels;<br>declared ir | rials; PERT<br>esources of<br>primary e<br>FW = Net | = Total u<br>used as ra<br>nergy reso<br>use of fre | se of rene<br>w materia<br>ources; SN<br>sh water | wable prii<br>ls; PENRM<br>1 = Use of | mary ener<br>1 = Use of<br>secondar | gy resour<br>non-rene<br>y material | ces; PENR<br>wable prir<br>; RSF = Us | E = Use of<br>mary ener<br>e of renev | non-rene<br>gy resourc<br>vable secc | wable pri<br>es used a<br>ondary fue | mary ener<br>s raw mat<br>els; NRSF = | gy excludi<br>erials; PEN<br>Use of no | ing non-<br>NRT =<br>on- |

Table 31: End-of-life (waste categories and output flows) - Group 5.

|           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | WAS          | STE CAT      | EGORIE       | S AND        | OUTPU        | T FLOW       | S PER F      | IXTURE       |              |              |              |              |               |
|-----------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------|
| Parameter | Unit    | A1-A3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A4           | A5           | B1           | B2           | В3           | B4           | B5           | В6           | В7           | C1           | C2           | С3           | C4           | D             |
| HWD       | kg      | 2,37E-<br>02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2,14E-<br>04 | 1,03E-<br>05 | 0,00E+<br>00 | 1,15E-<br>03 | 1,01E-<br>04 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 3,33E-<br>03 | 1,41E-<br>06 | 2,89E-<br>05 | 3,91E-<br>06 | 3,26E-<br>07 | -2,07E<br>-05 |
| NHWD      | kg      | 2,03E+<br>01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,07E+<br>00 | 1,94E-<br>01 | 0,00E+<br>00 | 3,64E+<br>00 | 1,51E-<br>01 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 1,33E+<br>01 | 3,24E-<br>03 | 1,88E-<br>01 | 4,08E-<br>02 | 3,16E-<br>01 | -6,01E<br>-02 |
| RWD       | kg      | 03 05 06 00 04 06 00 00 00 03 06 06 07 08 -06<br>0,00E+ 0,00E+ 0,00E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |              |              |              |              |              |              |              |              |              |              |              |               |
| CRU       | kg      | kg 0,00E+ |              |              |              |              |              |              |              |              |              |              |              |              |              |               |
| MFR       | kg      | 88 00 00 00 00 00 00 00 00 00 00 00 00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |              |              |              |              |              |              |              |              |              |              |              |              |               |
| MER       | kg      | 0,00E+<br>00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E<br>+00  |
| EEE       | MJ      | 2,99E-<br>03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,00E+<br>00 | 1,68E-<br>01 | 0,00E+<br>00 | 0,00E+<br>00 | 1,45E-<br>02 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 1,68E-<br>01 | 0,00E+<br>00 | 0,00E<br>+00  |
| EET       | MJ      | 2,87E-<br>02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,00E+<br>00 | 1,62E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 1,39E-<br>01 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 1,61E+<br>00 | 0,00E+<br>00 | 0,00E<br>+00  |
| Caption   | Materia | Hazardous<br>Is for recy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | cling; MEF   | R = Materi   | als for ene  | ergy recov   | ery; EEE =   | Exported     | electrica    | l energy; E  | ET = Expo    | rted ther    | mal energ    | У            |              |               |
| Сарион    |         | nbers are o<br>-11 or 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |              | c notation   | , fx 1,95E-  | +02. This r  | number ca    | in also be   | written a    | s: 1,95*10   | 2 or 195,    | while 1,12   | 2E-11 is th  | ie same as   | <b>;</b>      |

Table 32: Biogenic carbon content - Group 5.

| BIOGENIC CARBOI                                   | N CONTENT PER FIXTURE |                                                  |
|---------------------------------------------------|-----------------------|--------------------------------------------------|
| Parameter                                         | Unit                  | At the factory gate                              |
| Biogenic carbon content in a product              | kg C                  | 0                                                |
| Biogenic carbon content in accompanying packaging | kg C                  | 0,56                                             |
| Note                                              | 1 kg biogenic carl    | oon is equivalent to 44/12 kg of CO <sub>2</sub> |





### Group 6: Exclusive color (PVD on Stainless steel) is represented by 321L-64 - Brushed copper

Table 33: Environmental impact indicators - Group 6.

|             |                                                |              |              |              | ENV          | IRONM        | ENTAL I      | MPACT        | S PER F      | IXTURE       |              |              |              |              |              |               |
|-------------|------------------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------|
| Parameter   | Unit                                           | A1-A3        | A4           | A5           | B1           | B2           | В3           | B4           | B5           | В6           | В7           | C1           | C2           | C3           | C4           | D             |
| GWP- total  | kg CO <sub>2</sub> -                           | 5,11E+       | 2,43E+       | 6,62E-       | 0,00E+       | 8,93E+       | 6,25E-       | 0,00E+       | 0,00E+       | 0,00E+       | 6,54E+       | 3,67E-       | 3,29E-       | 2,37E-       | 2,00E-       | -3,42E        |
|             | eq.                                            | 01           | 00           | 01           | 00           | 00           | 01           | 00           | 00           | 00           | 01           | 02           | 01           | 01           | 02           | -01           |
| GWP-fossil  | kg CO <sub>2</sub> -                           | 5,10E+       | 2,43E+       | 1,46E-       | 0,00E+       | 1,59E+       | 5,97E-       | 0,00E+       | 0,00E+       | 0,00E+       | 6,39E+       | 3,54E-       | 3,28E-       | 2,33E-       | 8,42E-       | -3,23E        |
|             | eq.                                            | 01           | 00           | 01           | 00           | 01           | 01           | 00           | 00           | 00           | 01           | 02           | 01           | 01           | 03           | -01           |
| GWP-        | kg CO <sub>2</sub> -                           | -3,90E-      | 0,00E+       | 4,95E-       | 0,00E+       | 5,25E-       | 0,00E+       | 0,00E+       | 0,00E+       | 0,00E+       | 1,34E+       | 1,23E-       | 0,00E+       | 0,00E+       | 0,00E+       | -1,25E        |
| biogenic    | eq.                                            | 01           | 00           | 01           | 00           | 03           | 00           | 00           | 00           | 00           | 00           | 03           | 00           | 00           | 00           | -03           |
| GWP- luluc  | kg CO <sub>2</sub> -                           | 1,18E-       | 1,42E-       | 5,71E-       | 0,00E+       | 1,11E+       | 4,77E-       | 0,00E+       | 0,00E+       | 0,00E+       | 1,12E-       | 8,83E-       | 1,50E-       | 3,28E-       | 1,98E-       | -1,51E        |
|             | eq.                                            | 01           | 03           | 05           | 00           | 01           | 04           | 00           | 00           | 00           | 01           | 05           | 04           | 05           | 06           | -04           |
| ODP         | kg CFC                                         | 7,54E-       | 5,28E-       | 2,53E-       | 0,00E+       | 1,03E-       | 4,49E-       | 0,00E+       | 0,00E+       | 0,00E+       | 1,81E-       | 6,75E-       | 7,15E-       | 1,12E-       | 6,94E-       | -1,07E        |
|             | 11 -eq.                                        | 07           | 08           | 09           | 00           | 06           | 09           | 00           | 00           | 00           | 06           | 10           | 09           | 09           | 11           | -08           |
| AP          | mol H <sup>+-</sup>                            | 2,61E+       | 7,44E-       | 5,61E-       | 0,00E+       | 1,42E-       | 1,39E-       | 0,00E+       | 0,00E+       | 0,00E+       | 3,50E-       | 2,03E-       | 1,02E-       | 2,59E-       | 2,06E-       | -8,05E        |
|             | eq.                                            | 00           | 03           | 04           | 00           | 01           | 02           | 00           | 00           | 00           | 01           | 04           | 03           | 04           | 05           | -04           |
| EP-         | kg P-eq.                                       | 2,05E-       | 2,06E-       | 1,32E-       | 0,00E+       | 5,92E-       | 1,02E-       | 0,00E+       | 0,00E+       | 0,00E+       | 4,24E-       | 3,35E-       | 2,26E-       | 6,08E-       | 5,08E-       | -4,75E        |
| freshwater  |                                                | 01           | 04           | 05           | 00           | 03           | 03           | 00           | 00           | 00           | 02           | 05           | 05           | 06           | 07           | -05           |
| EP- marine  | kg N-eq.                                       | 1,49E-<br>01 | 2,40E-<br>03 | 4,47E-<br>04 | 0,00E+<br>00 | 1,13E-<br>01 | 1,27E-<br>03 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 6,82E-<br>02 | 3,28E-<br>05 | 3,50E-<br>04 | 1,05E-<br>04 | 3,43E-<br>05 | -2,74E<br>-04 |
| EP-         | mol N-                                         | 1,98E+       | 2,52E-       | 2,14E-       | 0,00E+       | 4,62E-       | 1,22E-       | 0,00E+       | 0,00E+       | 0,00E+       | 6,54E-       | 2,97E-       | 3,69E-       | 1,07E-       | 8,01E-       | -2,72E        |
| terrestrial | eq.                                            | 00           | 02           | 03           | 00           | 01           | 02           | 00           | 00           | 00           | 01           | 04           | 03           | 03           | 05           | -03           |
| POCP        | kg<br>NMVOC-<br>eq.                            | 5,65E-<br>01 | 1,08E-<br>02 | 8,70E-<br>04 | 0,00E+<br>00 | 9,33E-<br>02 | 3,62E-<br>03 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 2,39E-<br>01 | 9,54E-<br>05 | 1,53E-<br>03 | 3,54E-<br>04 | 3,20E-<br>05 | -1,11E<br>-03 |
| ADPE        | kg Sb-                                         | 3,53E-       | 1,06E-       | 4,72E-       | 0,00E+       | 1,76E-       | 1,71E-       | 0,00E+       | 0,00E+       | 0,00E+       | 3,36E-       | 4,29E-       | 1,05E-       | 1,71E-       | 5,23E-       | -8,54E        |
|             | eq.                                            | 02           | 05           | 07           | 00           | 04           | 04           | 00           | 00           | 00           | 04           | 07           | 06           | 07           | 09           | -07           |
| ADPF        | МЈ                                             | 6,54E+<br>02 | 3,41E+<br>01 | 1,67E+<br>00 | 0,00E+<br>00 | 2,69E+<br>02 | 8,05E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 1,15E+<br>03 | 8,05E-<br>01 | 4,62E+<br>00 | 7,00E-<br>01 | 6,20E-<br>02 | -4,75<br>E+00 |
| WDP         | m³                                             | 4,44E+<br>01 | 1,41E-<br>01 | 1,52E-<br>02 | 0,00E+<br>00 | 6,47E+<br>01 | 5,41E-<br>01 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 8,77E+<br>03 | 9,07E-<br>03 | 1,75E-<br>02 | 1,01E-<br>02 | 2,64E-<br>03 | -2,29E<br>-02 |
| Caption     | GWP-lulu<br>aquatic fr<br>ADPm = A<br>The numb |              |              |              |              |              |              |              |              |              |              |              |              |              |              |               |
| Disclaimer  | 1 The resu                                     | ults of this |              |              | icator shal  | l be used    | with care    | as the un    | certaintie   | s on these   | results ar   | e high or    | as there is  | limited e    | experience   | ed with       |

Table 34: Additional environmental impacts - Group 6.

|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                           |                           | ADI          | DITIONA      | AL ENVI      | RONME                    | NTAL II      | MPACT:       | S PER FI     | XTURE                 |              |              |              |              |               |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------|--------------|--------------|--------------------------|--------------|--------------|--------------|-----------------------|--------------|--------------|--------------|--------------|---------------|
| Parameter   | Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A1-A3                                                                                                                                                                                                     | A4                        | A5           | B1           | B2           | В3                       | B4           | B5           | В6           | В7                    | C1           | C2           | С3           | C4           | D             |
| PM          | Disease<br>Incidence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6,98E-<br>06                                                                                                                                                                                              | 1,42E-<br>07              | 1,10E-<br>08 | 0,00E+<br>00 | 2,02E-<br>06 | 1,10E-<br>07             | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 3,63E-<br>06          | 7,44E-<br>10 | 2,24E-<br>08 | 4,53E-<br>09 | 4,24E-<br>10 | -1,09<br>E-08 |
| IRP         | kBq U235<br>eq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2,47E+<br>01                                                                                                                                                                                              | 6,81E-<br>02              | 4,20E-<br>03 | 0,00E+<br>00 | 1,26E+<br>00 | 2,67E-<br>02             | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 2,43E+<br>01          | 2,27E-<br>02 | 7,46E-<br>03 | 1,67E-<br>03 | 7,59E-<br>05 | -2,68<br>E-02 |
| ETP-fw      | CTUe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ue 3,74E+ 1,81E+ 1,69E+ 0,00E+ 5,34E+ 1,88E+ 0,00E+ 0,00E+ 0,00E+ 2,93E+ 1,35E- 00 00 01 02 E-01  Uh 4,63E- 1,24E- 8,84E- 0,00E+ 2,96E- 2,05E- 0,00E+ 0,00E+ 0,00E+ 2,82E- 1,66E- 1,37E- 4,37E- 2,09E1,13 |                           |              |              |              |                          |              |              |              |                       |              |              |              |              |               |
| НТР-с       | CTUh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ue 03 01 00 00 02 01 00 00 00 02 01 00 00 02 01 00 01 02 E-01  Uh 4,63E- 07 09 11 00 08 09 00 00 00 00 07 11 10 11 12 E-10                                                                                |                           |              |              |              |                          |              |              |              |                       |              |              |              |              |               |
| HTP-nc      | CTUh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 70h 07 09 11 00 08 09 00 00 00 07 11 10 11 12 E-10                                                                                                                                                        |                           |              |              |              |                          |              |              |              |                       |              |              |              |              |               |
| SQP         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9,39E+<br>02                                                                                                                                                                                              | 1,42E+<br>01              | 8,05E-<br>01 | 0,00E+<br>00 | 8,50E+<br>02 | 4,62E+<br>00             | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 2,50E+<br>02          | 1,57E-<br>01 | 2,37E+<br>00 | 5,06E-<br>01 | 1,30E-<br>01 | -8,76<br>E-01 |
| Caption     | PM = Part<br>HTP-nc = I<br>The numb<br>11 or 0,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Human to:<br>ers are de                                                                                                                                                                                   | xicity – no<br>eclared in | n cancer     | effects; SC  | QP = Soil (  | Quality (di              | mensionle    | ess)         |              |                       |              |              |              |              |               |
| Disclaimers | 1 The resulthe indica<br>2 This implications consider elements in the consideration elements in the cons | tor.<br>act catego<br>effects due                                                                                                                                                                         | ory deals<br>e to possil  | mainly wi    | th the eve   | ntual imp    | act of low<br>tional exp | dose ion     | izing radia  | ition on h   | uman hea<br>waste dis | Ith of the   | nuclear fo   | uel cycle.   | It does no   | t             |





Table 35: Parameters describing resource use - Group 6.

|           |                                                        |                                                                                      |                                                                  |                                                    |                                                     | RES                                               | OURCE                                 | USE PEI                             | R FIXTU                             | RE                                    |                                       |                                      |                                       |                                       |                                        |                          |
|-----------|--------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------|---------------------------------------------------|---------------------------------------|-------------------------------------|-------------------------------------|---------------------------------------|---------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------|--------------------------|
| Parameter | Unit                                                   | A1-A3                                                                                | A4                                                               | A5                                                 | B1                                                  | B2                                                | В3                                    | B4                                  | B5                                  | В6                                    | В7                                    | C1                                   | C2                                    | C3                                    | C4                                     | D                        |
| PERE      | MJ                                                     | 3,25E+<br>02                                                                         | 7,43E-<br>01                                                     | -1,80E<br>+01                                      | 0,00E+<br>00                                        | 4,59E+<br>02                                      | 6,79E-<br>01                          | 0,00E+<br>00                        | 0,00E+<br>00                        | 0,00E+<br>00                          | 1,69E+<br>02                          | 1,80E-<br>01                         | 8,05E-<br>02                          | 2,01E-<br>02                          | 9,86E-<br>04                           | -2,26E-<br>01            |
| PERM      | MJ                                                     | 2,02E-<br>01                                                                         | 0,00E+<br>00                                                     | 1,81E+<br>01                                       | 0,00E+<br>00                                        | 0,00E+<br>00                                      | 0,00E+<br>00                          | 0,00E+<br>00                        | 0,00E+<br>00                        | 0,00E+<br>00                          | 0,00E+<br>00                          | 0,00E+<br>00                         | 0,00E+<br>00                          | 0,00E+<br>00                          | 0,00E+<br>00                           | 0,00E+<br>00             |
| PERT      | MJ                                                     | 3,25E+<br>02                                                                         | 7,43E-<br>01                                                     | 4,38E-<br>02                                       | 0,00E+<br>00                                        | 4,59E+<br>02                                      | 6,79E-<br>01                          | 0,00E+<br>00                        | 0,00E+<br>00                        | 0,00E+<br>00                          | 1,69E+<br>02                          | 1,80E-<br>01                         | 8,05E-<br>02                          | 2,01E-<br>02                          | 9,86E-<br>04                           | -2,26E-<br>01            |
| PENRE     | MJ                                                     | 6,91E+<br>02                                                                         | 3,63E+<br>01                                                     | 1,24E+<br>00                                       | 0,00E+<br>00                                        | 3,04E+<br>02                                      | 8,64E+<br>00                          | 0,00E+<br>00                        | 0,00E+<br>00                        | 0,00E+<br>00                          | 1,21E+<br>03                          | 8,44E-<br>01                         | 4,91E+<br>00                          | 7,45E-<br>01                          | 6,60E-<br>02                           | -5,16E<br>+00            |
| PENRM     | MJ                                                     | 00 00 01 00 00 00 00 00 00 00 00 00 00 0                                             |                                                                  |                                                    |                                                     |                                                   |                                       |                                     |                                     |                                       |                                       |                                      |                                       |                                       |                                        |                          |
| PENRT     | MJ                                                     | 00 00 01 00 00 00 00 00 00 00 00 00 00 0                                             |                                                                  |                                                    |                                                     |                                                   |                                       |                                     |                                     |                                       |                                       |                                      |                                       |                                       |                                        |                          |
| SM        | kg                                                     | 0,00E+<br>00                                                                         | 0,00E+<br>00                                                     | 0,00E+<br>00                                       | 0,00E+<br>00                                        | 0,00E+<br>00                                      | 0,00E+<br>00                          | 0,00E+<br>00                        | 0,00E+<br>00                        | 0,00E+<br>00                          | 0,00E+<br>00                          | 0,00E+<br>00                         | 0,00E+<br>00                          | 0,00E+<br>00                          | 0,00E+<br>00                           | 0,00E+<br>00             |
| RSF       | MJ                                                     | 0,00E+<br>00                                                                         | 0,00E+<br>00                                                     | 0,00E+<br>00                                       | 0,00E+<br>00                                        | 0,00E+<br>00                                      | 0,00E+<br>00                          | 0,00E+<br>00                        | 0,00E+<br>00                        | 0,00E+<br>00                          | 0,00E+<br>00                          | 0,00E+<br>00                         | 0,00E+<br>00                          | 0,00E+<br>00                          | 0,00E+<br>00                           | 0,00E+<br>00             |
| NRSF      | МЈ                                                     | 0,00E+<br>00                                                                         | 0,00E+<br>00                                                     | 0,00E+<br>00                                       | 0,00E+<br>00                                        | 0,00E+<br>00                                      | 0,00E+<br>00                          | 0,00E+<br>00                        | 0,00E+<br>00                        | 0,00E+<br>00                          | 0,00E+<br>00                          | 0,00E+<br>00                         | 0,00E+<br>00                          | 0,00E+<br>00                          | 0,00E+<br>00                           | 0,00E+<br>00             |
| FW        | m³                                                     | 4,61E+<br>01                                                                         | 1,40E-<br>01                                                     | 1,52E-<br>02                                       | 0,00E+<br>00                                        | 6,27E+<br>01                                      | 5,31E-<br>01                          | 0,00E+<br>00                        | 0,00E+<br>00                        | 0,00E+<br>00                          | 8,36E+<br>03                          | 5,81E-<br>06                         | 1,83E-<br>06                          | 4,15E-<br>07                          | 1,82E-<br>08                           | -6,84E-<br>06            |
| Caption   | resource<br>renewal<br>Total use<br>renewal<br>The num | Use of rene<br>es used as<br>ble primare<br>e of non-re<br>ble second<br>nbers are c | raw mate<br>y energy r<br>enewable<br>lary fuels;<br>declared ir | rials; PERT<br>esources (<br>primary e<br>FW = Net | = Total u<br>used as ra<br>nergy reso<br>use of fre | se of rene<br>w materia<br>ources; SN<br>sh water | wable prii<br>ls; PENRM<br>1 = Use of | mary ener<br>1 = Use of<br>secondar | gy resour<br>non-rene<br>y material | ces; PENR<br>wable prir<br>; RSF = Us | E = Use of<br>mary ener<br>e of renev | non-rene<br>gy resourd<br>vable seco | wable pri<br>ces used a<br>ondary fue | mary ener<br>s raw mat<br>els; NRSF = | gy excludi<br>erials; PEN<br>Use of no | ing non-<br>NRT =<br>on- |

Table 36: End-of-life (waste categories and output flows) - Group 6.

|           |                                                                                                                                                                                                                                                                         |                            |              | WAS          | STE CAT      | EGORIE       | S AND        | OUTPU        | T FLOW       | S PER F      | IXTURE       |              |              |              |              |               |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------|
| Parameter | Unit                                                                                                                                                                                                                                                                    | A1-A3                      | A4           | A5           | B1           | B2           | В3           | B4           | B5           | В6           | В7           | C1           | C2           | С3           | C4           | D             |
| HWD       | kg                                                                                                                                                                                                                                                                      | 1,90E-<br>02               | 2,17E-<br>04 | 1,03E-<br>05 | 0,00E+<br>00 | 1,15E-<br>03 | 1,01E-<br>04 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 3,33E-<br>03 | 1,41E-<br>06 | 2,93E-<br>05 | 3,97E-<br>06 | 3,24E-<br>07 | -2,07E<br>-05 |
| NHWD      | kg                                                                                                                                                                                                                                                                      | 2,48E+<br>01               | 1,09E+<br>00 | 1,94E-<br>01 | 0,00E+<br>00 | 3,64E+<br>00 | 1,51E-<br>01 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 1,33E+<br>01 | 3,24E-<br>03 | 1,90E-<br>01 | 4,15E-<br>02 | 3,15E-<br>01 | -6,08E<br>-02 |
| RWD       | kg                                                                                                                                                                                                                                                                      | 1,51E-<br>03               | 1,68E-<br>05 | 1,05E-<br>06 | 0,00E+<br>00 | 3,15E-<br>04 | 6,87E-<br>06 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 6,22E-<br>03 | 5,81E-<br>06 | 1,83E-<br>06 | 4,15E-<br>07 | 1,82E-<br>08 | -6,84E<br>-06 |
| CRU       | kg                                                                                                                                                                                                                                                                      | 0,00E+<br>00               | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E<br>+00  |
| MFR       | kg                                                                                                                                                                                                                                                                      | 4,31E+<br>00               | 0,00E+<br>00 | 8,50E-<br>01 | 0,00E+<br>00 | 0,00E+<br>00 | 1,77E-<br>02 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 4,59E+<br>00 | 0,00E+<br>00 | 0,00E<br>+00  |
| MER       | kg                                                                                                                                                                                                                                                                      | 0,00E+<br>00               | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E<br>+00  |
| EEE       | MJ                                                                                                                                                                                                                                                                      | 2,99E-<br>03               | 0,00E+<br>00 | 1,68E-<br>01 | 0,00E+<br>00 | 0,00E+<br>00 | 1,45E-<br>02 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 1,68E-<br>01 | 0,00E+<br>00 | 0,00E<br>+00  |
| EET       | MJ                                                                                                                                                                                                                                                                      | 2,87E-<br>02               | 0,00E+<br>00 | 1,62E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 1,39E-<br>01 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 0,00E+<br>00 | 1,61E+<br>00 | 0,00E+<br>00 | 0,00E<br>+00  |
| Caption   | HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed; CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported electrical energy; EET = Exported thermal energy |                            |              |              |              |              |              |              |              |              |              |              |              |              |              |               |
| Сарион    |                                                                                                                                                                                                                                                                         | nbers are o<br>-11 or 0,00 |              |              | c notation   | , fx 1,95E-  | +02. This r  | number ca    | ın also be   | written a    | s: 1,95*10   | 2 or 195,    | while 1,12   | 2E-11 is th  | ie same as   | <b>;</b>      |

Table 37: Biogenic carbon content - Group 6.

| BIOGENIC CARBON CONTENT PER FIXTURE               |                                                                   |                     |  |  |  |  |  |
|---------------------------------------------------|-------------------------------------------------------------------|---------------------|--|--|--|--|--|
| Parameter                                         | Unit                                                              | At the factory gate |  |  |  |  |  |
| Biogenic carbon content in a product              | kg C                                                              | 0                   |  |  |  |  |  |
| Biogenic carbon content in accompanying packaging | kg C                                                              | 0,56                |  |  |  |  |  |
| Note                                              | 1 kg biogenic carbon is equivalent to 44/12 kg of CO <sub>2</sub> |                     |  |  |  |  |  |





### Additional information

#### **LCA** interpretation

The hotspot analysis identified the areas where improvements can be made to reduce the environmental impact on VOLA's products. The hotspot analysis has identified that brass and steel have the highest material contribution to the overall environmental impact. These two materials are the main part of the product, and the contribution analysis of the potential environmental impacts showed also that they cause the highest impact among the other materials of the product.

Module B7, Operational water use is associated with the highest environmental impact because the scenario is based on a Reference Service Life of 30 years, with an assumption of results of 208 m³ (spouts 010 and 020) water consumption for a default scenario of 1,9 l/min and 20 use cycles per day, or with an assumption of results of 383 m³ (spouts 030) water consumption for a default scenario of 3,5 l/min and 20 use cycles per day.

**Technical information on scenarios** 

Table 38: Average transport to the building site (A4)

| Scenario information                        | Value                       | Unit  |
|---------------------------------------------|-----------------------------|-------|
| Fuel type                                   | Diesel                      | -     |
| Vehicle type                                | Euro 5                      | -     |
|                                             | Group 1: 321L - 16: 879 km  |       |
|                                             | Group 2: 321 - 19: 1.276 km |       |
| Average transport dictance                  | Group 3: 321L - 40: 879 km  | km    |
| Average transport distance                  | Group 4: 321L - 27: 879 km  | KIII  |
|                                             | Group 5: 321L - 60: 879 km  |       |
|                                             | Group 6: 321L - 64: 879 km  |       |
| Capacity utilization (including empty runs) | 85 % for trucks             | %     |
|                                             | 930 kg/m³ (with lorry)      |       |
| Gross density of products transported       | 697 kg/m³ (with flight)     | kg/m³ |
|                                             | 442 kg/m³ (with steel cage) |       |
| Capacity utilization volume factor          | 1                           | -     |





Table 39: Installation of the product in the building (A5)

| Scenario information           | Value                                                                               |                                                                            |                   |                    |                   |                    |     |  |  |  |
|--------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------|--------------------|-------------------|--------------------|-----|--|--|--|
|                                | Installation is simple and does not entail any relevant energy consumption or use o |                                                                            |                   |                    |                   |                    |     |  |  |  |
|                                | materials.                                                                          |                                                                            |                   |                    |                   |                    |     |  |  |  |
| Ancillary materials            | Mounting instruc                                                                    | Mounting instructions are included with the product or can be downloaded o |                   |                    |                   |                    |     |  |  |  |
|                                | www.VOLA.com                                                                        |                                                                            |                   |                    |                   |                    |     |  |  |  |
|                                | Packaging materials are cardboard, paper, and LDPE.                                 |                                                                            |                   |                    |                   |                    |     |  |  |  |
| Water use                      |                                                                                     | Not relevant                                                               |                   |                    |                   |                    |     |  |  |  |
| Other resource use             |                                                                                     | Not relevant                                                               |                   |                    |                   |                    |     |  |  |  |
| Energy type and consumption    |                                                                                     |                                                                            | Not relev         | vant               |                   |                    | kWh |  |  |  |
|                                | Materials                                                                           | Group 1                                                                    | Group 2           | Group 3            | Group 4           | Group 5            |     |  |  |  |
|                                |                                                                                     | 321L-16                                                                    | 321-19            | 321L-40            | 321-27            | 321L-60            |     |  |  |  |
|                                | LDPE                                                                                | 0,012                                                                      | 0,013             | 0,012              | 0,013             | 0,013              |     |  |  |  |
|                                | Cardboard                                                                           | 1,058                                                                      | 1,087             | 1,058              | 1,087             | 1,087              |     |  |  |  |
|                                | Paper                                                                               | 0,026                                                                      | 0,042             | 0,026              | 0,042             | 0,042              |     |  |  |  |
|                                | Wooden pallet                                                                       | 7,05E-05                                                                   | 7,88E-05          | 7,15E-05           | 7,95E-05          | 8,07E-05           |     |  |  |  |
| Waste materials                | SUMMARY                                                                             | 1,095                                                                      | 1,141             | 1,095              | 1,141             | 1,141              | kg  |  |  |  |
| Traded materials               | Materials                                                                           | Group 6                                                                    |                   |                    |                   |                    | 6   |  |  |  |
|                                |                                                                                     | 321L-64                                                                    |                   |                    |                   |                    |     |  |  |  |
|                                | LDPE                                                                                | 0,013                                                                      |                   |                    |                   |                    |     |  |  |  |
|                                | Cardboard                                                                           | 1,087                                                                      |                   |                    |                   |                    |     |  |  |  |
|                                | Paper                                                                               | 0,042                                                                      |                   |                    |                   |                    |     |  |  |  |
|                                | Wooden pallet                                                                       | 8,16E-05                                                                   |                   |                    |                   |                    |     |  |  |  |
|                                | SUMMARY                                                                             | 1,141                                                                      |                   |                    |                   |                    |     |  |  |  |
|                                | Materials                                                                           | Group 1<br>321L-16                                                         | Group 2<br>321-19 | Group 3<br>321L-40 | Group 4<br>321-27 | Group 5<br>321L-60 |     |  |  |  |
|                                | LDPE                                                                                | 0,003                                                                      | 0,004             | 0,003              | 0,004             | 0,004              |     |  |  |  |
|                                | Cardboard                                                                           | 0,793                                                                      | 0,815             | 0,003              | 0,815             | 0,815              |     |  |  |  |
|                                | Paper                                                                               | 0,019                                                                      | 0,031             | 0,019              | 0,031             | 0,031              |     |  |  |  |
|                                | SUMMARY                                                                             | 0,816                                                                      | 0,850             | 0,816              | 0,850             | 0,850              |     |  |  |  |
| Output materials for recycling | JOIVINALLI                                                                          | Group 6                                                                    | 0,030             | 0,010              | 0,030             | 0,030              | kg  |  |  |  |
|                                | Materials                                                                           | 321L-64                                                                    |                   |                    |                   |                    |     |  |  |  |
|                                | LDPE                                                                                | 0,004                                                                      |                   |                    |                   |                    |     |  |  |  |
|                                | Cardboard                                                                           | 0,815                                                                      |                   |                    |                   |                    |     |  |  |  |
|                                | Paper                                                                               | 0,031                                                                      |                   |                    |                   |                    |     |  |  |  |
|                                | SUMMARY                                                                             | 0,850                                                                      |                   |                    |                   |                    |     |  |  |  |
|                                | Materials                                                                           | Group 1                                                                    | Group 2           | Group 3            | Group 4           | Group 5            |     |  |  |  |
|                                | Triaterials                                                                         | 321L-16                                                                    | 321-19            | 321L-40            | 321-27            | 321L-60            |     |  |  |  |
|                                | LDPE                                                                                | 0,004                                                                      | 0,005             | 0,004              | 0,005             | 0,005              |     |  |  |  |
|                                | Cardboard                                                                           | 0,145                                                                      | 0,149             | 0,145              | 0,149             | 0,149              |     |  |  |  |
|                                | Paper                                                                               | 0,004                                                                      | 0,006             | 0,004              | 0,006             | 0,006              |     |  |  |  |
|                                | Wooden pallet                                                                       | 0,0001                                                                     | 0,0001            | 0,0001             | 0,0001            | 0,0001             |     |  |  |  |
| Output materials for           | SUMMARY                                                                             | 0,153                                                                      | 0,160             | 0,153              | 0,160             | 0,160              | kg  |  |  |  |
| incineration                   | Materials                                                                           | Group 6<br>321L-64                                                         |                   |                    |                   |                    |     |  |  |  |
|                                | LDPE                                                                                | 0,005                                                                      |                   |                    |                   |                    |     |  |  |  |
|                                | Cardboard                                                                           | 0,149                                                                      |                   |                    |                   |                    |     |  |  |  |
|                                | Paper                                                                               | 0,006                                                                      |                   |                    |                   |                    |     |  |  |  |
|                                | Wooden pallet                                                                       | 0,0001                                                                     |                   |                    |                   |                    |     |  |  |  |
|                                | SUMMARY                                                                             | 0,160                                                                      |                   |                    |                   |                    |     |  |  |  |





|                                   | Matarials   | Group 1 | Group 2 | Group 3 | Group 4 | Group 5 |    |  |
|-----------------------------------|-------------|---------|---------|---------|---------|---------|----|--|
|                                   | Materials   | 321L-16 | 321-19  | 321L-40 | 321-27  | 321L-60 |    |  |
|                                   | LDPE        | 0,004   | 0,004   | 0,004   | 0,004   | 0,004   |    |  |
|                                   | Cardboard   | 0,119   | 0,122   | 0,119   | 0,122   | 0,122   |    |  |
|                                   | Paper       | 0,003   | 0,005   | 0,003   | 0,005   | 0,005   |    |  |
| Output materials for landfill     | SUMMARY     | 0,126   | 0,131   | 0,126   | 0,131   | 0,131   | ka |  |
| Output materials for familing     | Materials   | Group 6 |         |         |         |         | kg |  |
|                                   | iviateriais | 321L-64 |         |         |         |         |    |  |
|                                   | LDPE        | 0,004   |         |         |         |         |    |  |
|                                   | Cardboard   | 0,122   |         |         |         |         |    |  |
|                                   | Paper       | 0,005   |         |         |         |         |    |  |
|                                   | SUMMARY     | 0,131   |         |         |         |         |    |  |
| Direct emissions to air, soil, or | o o         |         |         |         |         |         | kg |  |
| water                             |             | 0       |         |         |         |         |    |  |

#### Table 40: Reference service life

| RSL information               | Unit           |
|-------------------------------|----------------|
| Reference service Life        | 30 Years       |
| Declared product properties   | As appropriate |
| Design application parameters | As appropriate |
| Assumed quality of work       | As appropriate |
| Outdoor environment           | As appropriate |
| Indoor environment            | As appropriate |
| Usage conditions              | As appropriate |
| Maintenance                   | As appropriate |





Table 41: Use (B1-B7)

| Scenario information                                |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Value                                          | е                               |                               |                                | Unit   |
|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------|-------------------------------|--------------------------------|--------|
| B1 – Use                                            |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                 |                               |                                |        |
|                                                     |                                                                                                                         | 100 series is a build in single-lever mixer for control of both the water temperature and the water flow. The technical operating scenario is available in the "Consumption data" (B6-B7).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                |                                 |                               |                                |        |
| B2 - Maintenance                                    | <u> </u>                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                 |                               |                                |        |
| Maintenance process                                 | Maintenance ins                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                | h the VOLA                      | product and                   | can also be                    | -      |
| Maintenance cycle                                   |                                                                                                                         | Once p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | per week = 1.5                                 | 60 times per F                  | RSL                           |                                | /RSL   |
| Ancillary materials for maintenance (specify which) | cleaning surface                                                                                                        | Cloth, little soap for cleaning, cotton bud, and detergents that are meant for the cleaning surface of the product (according to the maintenance instructions included in the VOLA product).  Soap (7,8 kg/RSL)  Water (816 I/RSL))  Acetic acid (3,6 I/RSL))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                |                                 |                               |                                | kg/RSL |
| Waste materials resulting                           |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                 |                               |                                |        |
| from the maintenance                                |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                              |                                 |                               |                                | kg     |
| (specify which)                                     |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                 |                               |                                |        |
| Net freshwater                                      |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                 |                               |                                |        |
| consumption during                                  | 0,816                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                 |                               |                                | m³     |
| maintenance                                         |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                 |                               |                                |        |
| Energy input during                                 | 0                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                 |                               |                                | kWh    |
| maintenance                                         | ·                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                 |                               |                                |        |
| B3 – Repair                                         |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                 |                               |                                |        |
| Repair process                                      | The product is m<br>Inspection is perf<br>agreement with<br>product and retu<br>If repair is imposs<br>product can be o | formed and a country the customer a country the customer a country the customer and the cus | description of r<br>and Technical S<br>stomer. | needed repair<br>Support. The r | is noted on a sepair is condu | sales order in<br>cted and the | -      |
| Inspection process                                  |                                                                                                                         | As                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | part of the re                                 | pair process.                   |                               |                                | -      |
| Repair cycle                                        |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,1                                            |                                 |                               |                                | /year  |
| Ancillary materials (specify which)                 |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NA                                             |                                 |                               |                                | kg/RSL |
|                                                     | Materials                                                                                                               | Group 1<br>321L-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Group 2<br>321-19                              | Group 3<br>321L-40              | Group 4<br>321-27             | Group 5<br>321L-60             |        |
| Waste materials (specify which)                     | Hoses (Steel) Cartridges (Ceramic, Brass, Plastic) Pilator                                                              | 0,000<br>0,0461<br>0,0016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,000<br>0,0461<br>0,0016                      | 0,000<br>0,0461<br>0,0016       | 0,000<br>0,0461<br>0,0016     | 0,000<br>0,0461<br>0,0016      | kg/RSL |
|                                                     | (Plastic) SUMMARY                                                                                                       | 0,0477                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0,0477                                         | 0,0477                          | 0,0477                        | 0,0477                         |        |





|                             | Materials              | Group 6         |                |                  |                 |             | l              |
|-----------------------------|------------------------|-----------------|----------------|------------------|-----------------|-------------|----------------|
|                             | iviateriais            | 321L-64         |                |                  |                 |             |                |
|                             | Hoses (Steel)          | 0,000           |                |                  |                 |             |                |
|                             | Cartridges             | 0,0461          |                |                  |                 |             |                |
|                             | (Ceramic,              |                 |                |                  |                 |             |                |
|                             | Brass, Plastic)        |                 |                |                  |                 |             |                |
|                             | Pilator                | 0,0016          |                |                  |                 |             |                |
|                             | (Plastic)              |                 |                |                  |                 |             |                |
|                             | SUMMARY                | 0,0477          |                |                  |                 |             |                |
| Net freshwater              |                        | ı               |                | 1                | - I             |             | 3              |
| consumption during repair   |                        |                 | 0              |                  |                 |             | m <sup>3</sup> |
| Energy input during repair  |                        | 0               |                |                  |                 |             | kg/RSL         |
| B6 + B7 – Use of energy and | water                  |                 |                |                  |                 |             |                |
| Ancillary materials         |                        |                 |                | ·C· 1            |                 |             |                |
| specified by material       |                        |                 | Not spec       | cified           |                 |             | kg             |
|                             | The spouts 010 a       | ind 020 (111, 1 | 11L, 111M, 1   | 12, 112L, 112N   | Л, 121, 121L, 1 | 21M, 122,   |                |
| Net freshwater              | 122L, 122M, 311        | , 311L, 311M,   | 321, 321L, 321 | 1M):             |                 |             | 3              |
| consumption                 | 208 m³ (20 cycles      | s per day, 30 s | ec. lengths of | use cycle, lifes | pan of 30 year  | s) with 1,9 | m <sup>3</sup> |
|                             | I/min flow rate.       |                 |                |                  |                 |             |                |
| Type of energy carrier      |                        |                 | 0              |                  |                 |             | kWh/RSL        |
| The power output of         |                        |                 |                |                  |                 |             | LAAZ           |
| equipment                   |                        | 0 kW            |                |                  |                 |             | KVV            |
| Characteristic performance  | ance Not specified app |                 |                |                  |                 | As          |                |
| Characteristic performance  |                        |                 |                |                  | appropriate     |             |                |
| Further assumptions for     |                        | Not specified   |                |                  |                 | As          |                |
| scenario development        |                        |                 |                |                  | appropriate     |             |                |





Table 42: End of life (C1-C4)

| Scenario infor                   | mation    |          |          | Value    |          |          | Unit |
|----------------------------------|-----------|----------|----------|----------|----------|----------|------|
|                                  |           | Group 1  | Group 2  | Group 3  | Group 4  | Group 5  |      |
|                                  |           | 321L-16  | 321-19   | 321L-40  | 321-27   | 321L-60  |      |
| Collected separately             | CUBARARDY | 4,19E+00 | 4,77E+00 | 4,25E+00 | 4,82E+00 | 4,91E+00 |      |
|                                  | SUMMARY   | Group 6  |          |          |          |          | kg   |
|                                  |           | 321L-64  |          |          |          |          |      |
|                                  |           | 4,98E+00 |          |          |          |          |      |
| Collected<br>with mixed<br>waste |           |          |          | -        |          |          | kg   |
| For reuse                        |           |          |          | 0        |          |          | kg   |
|                                  |           | Group 1  | Group 2  | Group 3  | Group 4  | Group 5  |      |
|                                  |           | 321L-16  | 321-19   | 321L-40  | 321-27   | 321L-60  |      |
|                                  |           | 2,78E+00 | 3,29E+00 | 2,35E+00 | 3,28E+00 | 3,34E+00 |      |
|                                  |           | 1,09E-01 | 1,03E-01 | 1,01E-01 | 1,03E-01 | 1,09E-01 |      |
|                                  |           | 3,19E-02 | 3,22E-02 | 3,19E-02 | 3,22E-02 | 3,22E-02 |      |
|                                  |           | 1,10E-02 | 1,14E-02 | 5,26E-01 | 2,85E-02 | 1,14E-02 |      |
|                                  |           | 9,48E-01 | 9,50E-01 | 9,48E-01 | 9,98E-01 | 1,03E+00 |      |
| F                                | CUBARARDY | 3,88E+00 | 4,39E+00 | 3,95E+00 | 4,44E+00 | 4,52E+00 | 1    |
| For recycling                    | SUMMARY   | Group 6  |          |          |          |          | kg   |
|                                  |           | 321L-64  |          |          |          |          |      |
|                                  |           | 2,90E+00 |          |          |          |          |      |
|                                  |           | 1,01E-01 |          |          |          |          |      |
|                                  |           | 3,22E-02 |          |          |          |          |      |
|                                  |           | 5,31E-01 |          |          |          |          |      |
|                                  |           | 1,02E+00 |          |          |          |          |      |
|                                  |           | 4,59E+00 |          |          |          |          |      |
|                                  |           | Group 1  | Group 2  | Group 3  | Group 4  | Group 5  |      |
|                                  |           | 321L-16  | 321-19   | 321L-40  | 321-27   | 321L-60  |      |
|                                  |           | 3,00E-03 | 3,00E-03 | 3,00E-03 | 3,00E-03 | 3,00E-03 |      |
|                                  |           | 4,70E-02 | 4,90E-02 | 4,70E-02 | 4,90E-02 | 4,90E-02 |      |
|                                  |           | 4,95E-04 | 2,14E-02 | 4,95E-04 | 2,14E-02 | 2,14E-02 |      |
| For energy                       |           | 5,04E-02 | 7,34E-02 | 5,04E-02 | 7,34E-02 | 7,34E-02 |      |
| recovery                         | SUMMARY   | Group 6  |          |          |          |          | kg   |
| ·                                |           | 321L-64  |          |          |          |          |      |
|                                  |           | 3,00E-03 |          |          |          |          |      |
|                                  |           | 4,90E-02 |          |          |          |          |      |
|                                  |           | 2,14E-02 |          |          |          |          |      |
|                                  |           | 7,34E-02 |          |          |          |          |      |
|                                  |           | Group 1  | Group 2  | Group 3  | Group 4  | Group 5  |      |
|                                  |           | 321L-16  | 321-19   | 321L-40  | 321-27   | 321L-60  |      |
|                                  |           | 1,46E-01 | 1,73E-01 | 1,24E-01 | 1,73E-01 | 1,76E-01 |      |
|                                  |           | 1,54E-02 | 1,54E-02 | 1,54E-02 | 1,54E-02 | 1,54E-02 |      |
| For landfill                     |           | 1,25E-02 | 8,08E-03 | 6,88E-03 | 8,08E-03 | 1,25E-02 |      |
|                                  | SUMMARY   | 3,85E-02 | 4,02E-02 | 3,85E-02 | 4,02E-02 | 4,02E-02 | kg   |
|                                  |           | 4,05E-04 | 1,75E-02 | 4,05E-04 | 1,75E-02 | 1,75E-02 |      |
|                                  |           | 5,80E-04 | 6,00E-04 | 2,77E-02 | 1,50E-03 | 6,00E-04 |      |
|                                  |           | 4,99E-02 | 5,00E-02 | 4,99E-02 | 5,25E-02 | 5,42E-02 |      |
|                                  |           | 2,63E-01 | 3,05E-01 | 2,62E-01 | 3,08E-01 | 3,16E-01 |      |





|              | Group 6  |   |  |             |
|--------------|----------|---|--|-------------|
|              | 321L-64  |   |  |             |
|              | 1,53E-01 |   |  |             |
|              | 1,54E-02 |   |  |             |
|              | 6,88E-03 |   |  |             |
|              | 4,02E-02 |   |  |             |
|              | 1,75E-02 |   |  |             |
|              | 2,79E-02 |   |  |             |
|              | 5,39E-02 |   |  |             |
|              | 3,14E-01 |   |  |             |
| Assumptions  |          |   |  | Λς.         |
| for scenario |          | - |  | As          |
| development  |          |   |  | appropriate |

Table 43: Re-use, recovery, and recycling potential (D)

| Scenario<br>information/Material | Value   |         |         |         |         |    |  |  |
|----------------------------------|---------|---------|---------|---------|---------|----|--|--|
|                                  | Group 1 | Group 2 | Group 3 | Group 4 | Group 5 |    |  |  |
|                                  | 321L-16 | 321-19  | 321L-40 | 321-27  | 321L-60 |    |  |  |
| Electrical energy recovered      | 0,28    | 0,35    | 0,28    | 0,35    | 0,35    | MJ |  |  |
| Thermal energy recovered         | 2,71    | 3,36    | 2,71    | 3,36    | 3,37    | MJ |  |  |
| Materials recovery               | 4,43    | 4,95    | 4,50    | 5,00    | 5,07    | kg |  |  |
|                                  | Group 6 |         |         |         |         |    |  |  |
|                                  | 321L-64 |         |         |         |         |    |  |  |
| Electrical energy recovered      | 0,35    |         |         |         |         | MJ |  |  |
| Thermal energy recovered         | 3,37    |         |         |         |         | MJ |  |  |
| Materials recovery               | 5,14    |         |         |         |         | kg |  |  |





#### **Indoor air**

The EPD does not give information on the release of dangerous substances to the indoor air because the horizontal standards on measurement of the release of regulated dangerous substances from construction products using harmonized test methods according to the provisions of the respective technical committees for European product standards are not available.

#### Soil and water

The EPD does not give information on the release of dangerous substances to soil and water because the horizontal standards on measurement of the release of regulated dangerous substances from construction products using harmonized test methods according to the provisions of the respective technical committees for European product standards are not available.





## References

| Publisher                      | www.epddanmark.dk                                                                                                                                                          |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                | Template version 2022.2                                                                                                                                                    |
| Program operator               | Danish Technological Institute Buildings & Environment Gregersensvej DK-2630 Taastrup www.teknologisk.dk                                                                   |
| LCA-practitioner               | Kristyna Davidova, Odyssefs Papagiannidis, Waldemar<br>Hemdrup                                                                                                             |
|                                | BUREAU<br>VERITAS                                                                                                                                                          |
|                                | Bureau Veritas HSE Danmark<br>Oldenborggade 25-31<br>7000 Fredericia<br>Denmark                                                                                            |
|                                | https://www.bureauveritas.dk/en                                                                                                                                            |
| LCA software /background data  | SimaPro 9.3/ Ecoinvent 3.9.1 (2023)  Generic data are primarily based on life cycle inventory data from SimaPro 9.3 Professional Database 2022 and Ecoinvent version 3.9.1 |
| 3 <sup>rd</sup> party verifier | Charlotte B. Merlin  FORCE  TECHNOLOGY                                                                                                                                     |
|                                | FORCE Technology Park Allé 345 2605 Brøndby Denmark www.forcetechnology.com                                                                                                |





#### **General program instructions**

General Programme Instructions, version 2.0, spring 2020 www.epddanmark.dk

#### EN 15804

DS/EN 15804 + A2:2019 -"Sustainability of construction works – Environmental product declarations – Core rules for the product category of construction products"

#### **Product specific PCR**

Part B: Requirements on the EPD for Bathroom and showers. 25/07/2023 v5.

From the range of Environmental Product Declarations of Institute Construction and Environment e.V. (IBU), Institut Bauen und Umwelt e.V., Hegelplatz 1, 10117 Berlin.

#### EN 15942

DS/EN 15942:2011 –"Sustainability of Construction Works – Environmental product declarations – Communication format business-to-business"

#### ISO 14025

DS/EN ISO 14025:2010 –"Environmental Labels and Declarations – Type III environmental declarations – Principles and procedures"

#### ISO 14040

DS/EN ISO 14040:2008 -"Environmental Management - Life cycle assessment - Principles and framework"

#### ISO 14044

DS/EN ISO 14044:2008 –"Environmental Management – Life cycle assessment – Requirements and quidelines"

#### **BUILD REPORT 2021**

BUILD REPORT 2021: 32" Version 2021 - lifetime tables: Group 43 (3) <a href="https://build.dk/Pages/BUILD-levetidstabel.aspx">https://build.dk/Pages/BUILD-levetidstabel.aspx</a>